IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.06225.html
   My bibliography  Save this paper

Neural Network-based Automatic Factor Construction

Author

Listed:
  • Jie Fang
  • Jianwu Lin
  • Shutao Xia
  • Yong Jiang
  • Zhikang Xia
  • Xiang Liu

Abstract

Instead of conducting manual factor construction based on traditional and behavioural finance analysis, academic researchers and quantitative investment managers have leveraged Genetic Programming (GP) as an automatic feature construction tool in recent years, which builds reverse polish mathematical expressions from trading data into new factors. However, with the development of deep learning, more powerful feature extraction tools are available. This paper proposes Neural Network-based Automatic Factor Construction (NNAFC), a tailored neural network framework that can automatically construct diversified financial factors based on financial domain knowledge and a variety of neural network structures. The experiment results show that NNAFC can construct more informative and diversified factors than GP, to effectively enrich the current factor pool. For the current market, both fully connected and recurrent neural network structures are better at extracting information from financial time series than convolution neural network structures. Moreover, new factors constructed by NNAFC can always improve the return, Sharpe ratio, and the max draw-down of a multi-factor quantitative investment strategy due to their introducing more information and diversification to the existing factor pool.

Suggested Citation

  • Jie Fang & Jianwu Lin & Shutao Xia & Yong Jiang & Zhikang Xia & Xiang Liu, 2020. "Neural Network-based Automatic Factor Construction," Papers 2008.06225, arXiv.org, revised Oct 2020.
  • Handle: RePEc:arx:papers:2008.06225
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.06225
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    2. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    3. Zura Kakushadze, 2016. "101 Formulaic Alphas," Papers 1601.00991, arXiv.org, revised Mar 2016.
    4. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    5. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Zhang & Lan Wu & Zhixue Chen, 2021. "Constructing long-short stock portfolio with a new listwise learn-to-rank algorithm," Papers 2104.12484, arXiv.org.
    2. Gürdal Ertek & Lakshmi Kailas, 2021. "Analyzing a Decade of Wind Turbine Accident News with Topic Modeling," Sustainability, MDPI, vol. 13(22), pages 1-34, November.
    3. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    2. Malakhov, Alexey & Riley, Timothy B. & Yan, Qing, 2024. "Do hedge funds bet against beta?," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1507-1525.
    3. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    4. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    5. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    6. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
    7. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
    8. Chi Chen & Li Zhao & Wei Cao & Jiang Bian & Chunxiao Xing, 2020. "Trimming the Sail: A Second-order Learning Paradigm for Stock Prediction," Papers 2002.06878, arXiv.org.
    9. Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
    10. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    11. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.
    12. Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
    13. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    14. Cujean, Julien & Andrei, Daniel & Fournier, Mathieu, 2019. "The Low-Minus-High Portfolio and the Factor Zoo," CEPR Discussion Papers 14153, C.E.P.R. Discussion Papers.
    15. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    16. Lin, Qi, 2022. "Understanding idiosyncratic momentum in the Chinese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    17. Chinco, Alex & Neuhierl, Andreas & Weber, Michael, 2021. "Estimating the anomaly base rate," Journal of Financial Economics, Elsevier, vol. 140(1), pages 101-126.
    18. Dhasmana, Samriddhi & Goel, Sandeep, 2023. "The insidious hyperreality in financial markets: An integrative review with evidence from the Indian financial market," International Review of Financial Analysis, Elsevier, vol. 90(C).
    19. Tony Guida & Guillaume Coqueret, 2019. "Ensemble Learning Applied to Quant Equity: Gradient Boosting in a Multifactor Framework," Post-Print hal-02311104, HAL.
    20. Borup, Daniel, 2019. "Asset pricing model uncertainty," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 166-189.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.06225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.