IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.14447.html
   My bibliography  Save this paper

Analysis of the Global Banking Network by Random Matrix Theory

Author

Listed:
  • Ali Namaki
  • Jamshid Ardalankia
  • Reza Raei
  • Leila Hedayatifar
  • Ali Hosseiny
  • Emmanuel Haven
  • G. Reza Jafari

Abstract

Since 2008, the network analysis of financial systems is one of the most important subjects in economics. In this paper, we have used the complexity approach and Random Matrix Theory (RMT) for analyzing the global banking network. By applying this method on a cross border lending network, it is shown that the network has been denser and the connectivity between peripheral nodes and the central section has risen. Also, by considering the collective behavior of the system and comparing it with the shuffled one, we can see that this network obtains a specific structure. By using the inverse participation ratio concept, we can see that after 2000, the participation of different modes to the network has increased and tends to the market mode of the system. Although no important change in the total market share of trading occurs, through the passage of time, the contribution of some countries in the network structure has increased. The technique proposed in the paper can be useful for analyzing different types of interaction networks between countries.

Suggested Citation

  • Ali Namaki & Jamshid Ardalankia & Reza Raei & Leila Hedayatifar & Ali Hosseiny & Emmanuel Haven & G. Reza Jafari, 2020. "Analysis of the Global Banking Network by Random Matrix Theory," Papers 2007.14447, arXiv.org.
  • Handle: RePEc:arx:papers:2007.14447
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.14447
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Betz, Frank & Hautsch, Nikolaus & Peltonen, Tuomas A. & Schienle, Melanie, 2016. "Systemic risk spillovers in the European banking and sovereign network," Journal of Financial Stability, Elsevier, vol. 25(C), pages 206-224.
    2. Carmen M. Reinhart & Kenneth S. Rogoff, 2009. "Varieties of Crises and Their Dates," Introductory Chapters, in: This Time Is Different: Eight Centuries of Financial Folly, Princeton University Press.
    3. D’Errico, Marco & Battiston, Stefano & Peltonen, Tuomas & Scheicher, Martin, 2018. "How does risk flow in the credit default swap market?," Journal of Financial Stability, Elsevier, vol. 35(C), pages 53-74.
    4. Saeedian, M. & Jamali, T. & Kamali, M.Z. & Bayani, H. & Yasseri, T. & Jafari, G.R., 2019. "Emergence of world-stock-market network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    5. Reinhart, Karmen & Rogoff, Kenneth, 2009. ""This time is different": panorama of eight centuries of financial crises," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 77-114, March.
    6. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1121-1141.
    7. Glasserman, Paul & Young, H. Peyton, 2016. "Contagion in financial networks," LSE Research Online Documents on Economics 68681, London School of Economics and Political Science, LSE Library.
    8. Iori, Giulia & Mantegna, Rosario N. & Marotta, Luca & Miccichè, Salvatore & Porter, James & Tumminello, Michele, 2015. "Networked relationships in the e-MID interbank market: A trading model with memory," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 98-116.
    9. Namaki, A. & Shirazi, A.H. & Raei, R. & Jafari, G.R., 2011. "Network analysis of a financial market based on genuine correlation and threshold method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3835-3841.
    10. Paul Glasserman & H. Peyton Young, 2016. "Contagion in Financial Networks," Journal of Economic Literature, American Economic Association, vol. 54(3), pages 779-831, September.
    11. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    12. Namaki, A. & Jafari, G.R. & Raei, R., 2011. "Comparing the structure of an emerging market with a mature one under global perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(17), pages 3020-3025.
    13. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    14. Mr. Javier A. Reyes & Ms. Camelia Minoiu, 2011. "A network analysis of global banking: 1978–2009," IMF Working Papers 2011/074, International Monetary Fund.
    15. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    16. Etesami, Jalal & Habibnia, Ali & Kiyavash, Negar, 2017. "Econometric modeling of systemic risk: going beyond pairwise comparison and allowing for nonlinearity," LSE Research Online Documents on Economics 70769, London School of Economics and Political Science, LSE Library.
    17. Lim, Gyuchang & Kim, SooYong & Kim, Junghwan & Kim, Pyungsoo & Kang, Yoonjong & Park, Sanghoon & Park, Inho & Park, Sang-Bum & Kim, Kyungsik, 2009. "Structure of a financial cross-correlation matrix under attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3851-3858.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lilit Popoyan, 2020. "Macroprudential Policy: a Blessing or a Curse?," Review of Economics and Institutions, Università di Perugia, vol. 11(1-2).
    2. Michel Alexandre & Thiago Christiano Silva & Colm Connaughton & Francisco A. Rodrigues, 2021. "The Role of (non-)Topological Features as Drivers of Systemic Risk: a machine learning approach," Working Papers Series 556, Central Bank of Brazil, Research Department.
    3. Navarro, Noemí & Tran, Dan H., 2018. "Shock Diffusion in Regular Networks: The Role of Transitive Cycles," MPRA Paper 86267, University Library of Munich, Germany.
    4. Ramírez, Carlos, 2020. "Regulating financial networks under uncertainty," ESRB Working Paper Series 107, European Systemic Risk Board.
    5. Carlos Ramírez, 2019. "Regulating Financial Networks Under Uncertainty," Finance and Economics Discussion Series 2019-056, Board of Governors of the Federal Reserve System (U.S.).
    6. Alexandre, Michel & Silva, Thiago Christiano & Connaughton, Colm & Rodrigues, Francisco A., 2021. "The drivers of systemic risk in financial networks: a data-driven machine learning analysis," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    7. Rebekka Burkholz & Hans J. Herrmann & Frank Schweitzer, 2018. "Explicit size distributions of failure cascades redefine systemic risk on finite networks," Papers 1802.03286, arXiv.org.
    8. Hanie. Vahabi & Ali Namaki & Reza Raei, 2020. "Comparing the collective behavior of banking industry," Papers 2011.02026, arXiv.org.
    9. Ramadiah, Amanah & Caccioli, Fabio & Fricke, Daniel, 2020. "Reconstructing and stress testing credit networks," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    10. Irena Barjav{s}i'c & Stefano Battiston & Vinko Zlati'c, 2023. "Credit Valuation Adjustment in Financial Networks," Papers 2305.16434, arXiv.org.
    11. de-Ramon, Sebastián & Iscenko, Zanna & Osborne, Matthew & Straughan, Michael & Andrews, Peter, 2012. "Measuring the impact of prudential policy on the macroeconomy: A practical application to Basel III and other responses to the financial crisis," MPRA Paper 69423, University Library of Munich, Germany.
    12. Capponi, Agostino & Corell, Felix & Stiglitz, Joseph E., 2022. "Optimal bailouts and the doom loop with a financial network," Journal of Monetary Economics, Elsevier, vol. 128(C), pages 35-50.
    13. Mark Paddrik & Sriram Rajan & H. Peyton Young, 2016. "Contagion in the CDS Market," Working Papers 16-12, Office of Financial Research, US Department of the Treasury.
    14. Alan Kirman, 2010. "The Economic Crisis is a Crisis for Economic Theory ," CESifo Economic Studies, CESifo Group, vol. 56(4), pages 498-535, December.
    15. Ryan Rudderham, 2021. "Birds of a feather: separating spillovers from shocks in sovereign default," Annals of Finance, Springer, vol. 17(3), pages 353-378, September.
    16. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    17. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    18. Accominotti, Olivier & Lucena-Piquero, Delio & Ugolini, Stefano, 2023. "Intermediaries’ substitutability and financial network resilience: A hyperstructure approach," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    19. Hitoshi Hayakawa, 2020. "Liquidity in Financial Networks," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 253-301, January.
    20. Jose Arreola Hernandez & Sang Hoon Kang & Ron P. McIver & Seong-Min Yoon, 2021. "Network Interdependence and Optimization of Bank Portfolios from Developed and Emerging Asia Pacific Countries," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 613-647, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.14447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.