IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.09258.html
   My bibliography  Save this paper

New Jensen-type inequalities and their applications

Author

Listed:
  • Bar Light

Abstract

Convex analysis is fundamental to proving inequalities that have a wide variety of applications in economics and mathematics. In this paper we provide Jensen-type inequalities for functions that are, intuitively, "very" convex. These inequalities are simple to apply and can be used to generalize and extend previous results or to derive new results. We apply our inequalities to quantify the notion "more risk averse" provided in \cite{pratt1978risk}. We also apply our results in other applications from different fields, including risk measures, Poisson approximation, moment generating functions, log-likelihood functions, and Hermite-Hadamard type inequalities.

Suggested Citation

  • Bar Light, 2020. "New Jensen-type inequalities and their applications," Papers 2007.09258, arXiv.org, revised Aug 2021.
  • Handle: RePEc:arx:papers:2007.09258
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.09258
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Light, Bar & Perlroth, Andres, 2021. "The Family of Alpha,[a,b] Stochastic Orders: Risk vs. Expected Value," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Menezes, C & Geiss, C & Tressler, J, 1980. "Increasing Downside Risk," American Economic Review, American Economic Association, vol. 70(5), pages 921-932, December.
    4. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    2. Christian Gollier & James Hammitt & Nicolas Treich, 2013. "Risk and choice: A research saga," Journal of Risk and Uncertainty, Springer, vol. 47(2), pages 129-145, October.
    3. Schumacher Johannes M., 2018. "Distortion risk measures, ROC curves, and distortion divergence," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 35-50, January.
    4. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    5. Ehud Lehrer, 2009. "A new integral for capacities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(1), pages 157-176, April.
    6. Rose-Anne Dana & Cuong Le Van, 2009. "No-arbitrage, overlapping sets of priors and the existence of efficient allocations and equilibria in the presence of risk and ambiguity," Post-Print halshs-00281582, HAL.
    7. Han Bleichrodt & Christophe Courbage & Béatrice Rey, 2019. "The value of a statistical life under changes in ambiguity," Journal of Risk and Uncertainty, Springer, vol. 58(1), pages 1-15, February.
    8. Nendel, Max & Streicher, Jan, 2023. "An axiomatic approach to default risk and model uncertainty in rating systems," Journal of Mathematical Economics, Elsevier, vol. 109(C).
    9. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    10. Patrick Bei{ss}ner, 2012. "Coherent Price Systems and Uncertainty-Neutral Valuation," Papers 1202.6632, arXiv.org.
    11. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    12. Assa, Hirbod & Zimper, Alexander, 2018. "Preferences over all random variables: Incompatibility of convexity and continuity," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 71-83.
    13. Giraud, Gaël & Renouard, Cécile, 2011. "Is the Veil of Ignorance Transparent?," OEconomia, Editions NecPlus, vol. 2011(02), pages 239-258, June.
    14. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    15. Max Nendel & Jan Streicher, 2023. "An axiomatic approach to default risk and model uncertainty in rating systems," Papers 2303.08217, arXiv.org, revised Sep 2023.
    16. Grant, Simon & Polak, Ben, 2013. "Mean-dispersion preferences and constant absolute uncertainty aversion," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1361-1398.
    17. Christophe Courbage & Henri Loubergé & Béatrice Rey, 2018. "On the properties of high-order non-monetary measures for risks," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 43(1), pages 77-94, May.
    18. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    19. Dirk Becherer & Klebert Kentia, 2017. "Good Deal Hedging and Valuation under Combined Uncertainty about Drift and Volatility," Papers 1704.02505, arXiv.org.
    20. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.09258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.