IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.08682.html
   My bibliography  Save this paper

The Importance of Low Latency to Order Book Imbalance Trading Strategies

Author

Listed:
  • David Byrd
  • Sruthi Palaparthi
  • Maria Hybinette
  • Tucker Hybinette Balch

Abstract

There is a pervasive assumption that low latency access to an exchange is a key factor in the profitability of many high-frequency trading strategies. This belief is evidenced by the "arms race" undertaken by certain financial firms to co-locate with exchange servers. To the best of our knowledge, our study is the first to validate and quantify this assumption in a continuous double auction market with a single exchange similar to the New York Stock Exchange. It is not feasible to conduct this exploration with historical data in which trader identity and location are not reported. Accordingly, we investigate the relationship between latency of access to order book information and profitability of trading strategies exploiting that information with an agent-based interactive discrete event simulation in which thousands of agents pursue archetypal trading strategies. We introduce experimental traders pursuing a low-latency order book imbalance (OBI) strategy in a controlled manner across thousands of simulated trading days, and analyze OBI trader profit while varying distance (latency) from the exchange. Our experiments support that latency is inversely related to profit for the OBI traders, but more interestingly show that latency rank, rather than absolute magnitude, is the key factor in allocating returns among agents pursuing a similar strategy.

Suggested Citation

  • David Byrd & Sruthi Palaparthi & Maria Hybinette & Tucker Hybinette Balch, 2020. "The Importance of Low Latency to Order Book Imbalance Trading Strategies," Papers 2006.08682, arXiv.org.
  • Handle: RePEc:arx:papers:2006.08682
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.08682
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson Minar & Rogert Burkhart & Chris Langton & Manor Askenazi, 1996. "The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations," Working Papers 96-06-042, Santa Fe Institute.
    2. Levy, Moshe & Levy, Haim & Solomon, Sorin, 1994. "A microscopic model of the stock market : Cycles, booms, and crashes," Economics Letters, Elsevier, vol. 45(1), pages 103-111, May.
    3. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    4. Bloomfield, Robert & O'Hara, Maureen & Saar, Gideon, 2005. "The "make or take" decision in an electronic market: Evidence on the evolution of liquidity," Journal of Financial Economics, Elsevier, vol. 75(1), pages 165-199, January.
    5. Blake LeBaron, 2011. "Active and Passive Learning in Agent-based Financial Markets," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 37(1), pages 35-43.
    6. Jonathan Karnon & James Stahl & Alan Brennan & J. Jaime Caro & Javier Mar & Jörgen Möller, 2012. "Modeling Using Discrete Event Simulation," Medical Decision Making, , vol. 32(5), pages 701-711, September.
    7. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    8. David Byrd, 2019. "Explaining Agent-Based Financial Market Simulation," Papers 1909.11650, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong Zheng & Jiafa He & Can Yang, 2023. "Optimal Execution Using Reinforcement Learning," Papers 2306.17178, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    2. Anufriev, Mikhail & Dindo, Pietro, 2010. "Wealth-driven selection in a financial market with heterogeneous agents," Journal of Economic Behavior & Organization, Elsevier, vol. 73(3), pages 327-358, March.
    3. Anufriev Mikhail & Bottazzi Giulio, 2012. "Asset Pricing with Heterogeneous Investment Horizons," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(4), pages 1-38, October.
    4. Baosheng Yuan & Kan Chen, 2006. "Impact of investor’s varying risk aversion on the dynamics of asset price fluctuations," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 1(2), pages 189-214, November.
    5. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    6. Mikhail Anufriev & Giulio Bottazzi, 2006. "Behavioral Consistent Market Equilibria under Procedural Rationality," Computing in Economics and Finance 2006 225, Society for Computational Economics.
    7. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2011. "The dynamic behaviour of asset prices in disequilibrium: a survey," International Journal of Behavioural Accounting and Finance, Inderscience Enterprises Ltd, vol. 2(2), pages 101-139.
    8. Palczewski, Jan & Schenk-Hoppé, Klaus Reiner & Wang, Tongya, 2016. "Itchy feet vs cool heads: Flow of funds in an agent-based financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 63(C), pages 53-68.
    9. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    10. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Serena Brianzoni & Cristiana Mammana & Elisabetta Michetti, 2010. "Updating Wealth in an Asset Pricing Model with Heterogeneous Agents," Discrete Dynamics in Nature and Society, Hindawi, vol. 2010, pages 1-27, November.
    12. Roberto Dieci & Xue-Zhong He, 2018. "Heterogeneous Agent Models in Finance," Research Paper Series 389, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    14. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    15. Popoyan, Lilit & Napoletano, Mauro & Roventini, Andrea, 2017. "Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 117-140.
    16. J. Silvestre, & T. Araújo & M. St. Aubyn, 2016. "Economic growth and individual satisfaction in an agent-based economy," Working Papers Department of Economics 2016/19, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    17. Deniz Erdemlioglu & Nikola Gradojevic, 2021. "Heterogeneous investment horizons, risk regimes, and realized jumps," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 617-643, January.
    18. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    19. Kubin, Ingrid & Zörner, Thomas O. & Gardini, Laura & Commendatore, Pasquale, 2019. "A credit cycle model with market sentiments," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 159-174.
    20. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.08682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.