IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.06636.html
   My bibliography  Save this paper

Infinite-Duration All-Pay Bidding Games

Author

Listed:
  • Guy Avni
  • Ismael Jecker
  • {DJ}or{dj}e v{Z}ikeli'c

Abstract

In a two-player zero-sum graph game the players move a token throughout a graph to produce an infinite path, which determines the winner or payoff of the game. Traditionally, the players alternate turns in moving the token. In {\em bidding games}, however, the players have budgets, and in each turn, we hold an "auction" (bidding) to determine which player moves the token: both players simultaneously submit bids and the higher bidder moves the token. The bidding mechanisms differ in their payment schemes. Bidding games were largely studied with variants of {\em first-price} bidding in which only the higher bidder pays his bid. We focus on {\em all-pay} bidding, where both players pay their bids. Finite-duration all-pay bidding games were studied and shown to be technically more challenging than their first-price counterparts. We study for the first time, infinite-duration all-pay bidding games. Our most interesting results are for {\em mean-payoff} objectives: we portray a complete picture for games played on strongly-connected graphs. We study both pure (deterministic) and mixed (probabilistic) strategies and completely characterize the optimal sure and almost-sure (with probability $1$) payoffs that the players can respectively guarantee. We show that mean-payoff games under all-pay bidding exhibit the intriguing mathematical properties of their first-price counterparts; namely, an equivalence with {\em random-turn games} in which in each turn, the player who moves is selected according to a (biased) coin toss. The equivalences for all-pay bidding are more intricate and unexpected than for first-price bidding.

Suggested Citation

  • Guy Avni & Ismael Jecker & {DJ}or{dj}e v{Z}ikeli'c, 2020. "Infinite-Duration All-Pay Bidding Games," Papers 2005.06636, arXiv.org, revised Dec 2020.
  • Handle: RePEc:arx:papers:2005.06636
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.06636
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.06636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.