IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.01506.html
   My bibliography  Save this paper

Asymptotically Optimal Management of Heterogeneous Collectivised Investment Funds

Author

Listed:
  • John Armstrong
  • Cristin Buescu

Abstract

A collectivised fund is a proposed form of pension investment, in which all investors agree that any funds associated with deceased members should be split among survivors. For this to be a viable financial product, it is necessary to know how to manage the fund even when it is heterogeneous: that is when different investors have different preferences, wealth and mortality. There is no obvious way to define a single objective for a heterogeneous fund, so this is not an optimal control problem. In lieu of an objective function, we take an axiomatic approach. Subject to our axioms on the management of the fund, we find an upper bound on the utility that can be achieved for each investor, assuming a complete markets and the absence of systematic longevity risk. We give a strategy for the management of such heterogeneous funds which achieves this bound asymptotically as the number of investors tends to infinity.

Suggested Citation

  • John Armstrong & Cristin Buescu, 2020. "Asymptotically Optimal Management of Heterogeneous Collectivised Investment Funds," Papers 2004.01506, arXiv.org.
  • Handle: RePEc:arx:papers:2004.01506
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.01506
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benzoni, Luca & Collin-Dufresne, Pierre & Goldstein, Robert S., 2011. "Explaining asset pricing puzzles associated with the 1987 market crash," Journal of Financial Economics, Elsevier, vol. 101(3), pages 552-573, September.
    2. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    3. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    4. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    5. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    6. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    7. Ravi Bansal, 2007. "Long-run risks and financial markets," Review, Federal Reserve Bank of St. Louis, vol. 89(Jul), pages 283-300.
    8. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    9. Hao Xing, 2017. "Consumption–investment optimization with Epstein–Zin utility in incomplete markets," Finance and Stochastics, Springer, vol. 21(1), pages 227-262, January.
    10. John Armstrong & Cristin Buescu, 2019. "Collectivised Pension Investment with Exponential Kihlstrom--Mirman Preferences," Papers 1911.02296, arXiv.org, revised Nov 2019.
    11. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
    12. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    13. John Armstrong & Cristin Buescu, 2019. "Collectivised Pension Investment with Homogeneous Epstein-Zin Preferences," Papers 1911.10047, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.
    2. Kraft, Holger & Munk, Claus & Weiss, Farina, 2022. "Bequest motives in consumption-portfolio decisions with recursive utility," Journal of Banking & Finance, Elsevier, vol. 138(C).
    3. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    4. Campani, Carlos Heitor & Garcia, René, 2019. "Approximate analytical solutions for consumption/investment problems under recursive utility and finite horizon," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 364-384.
    5. Chen, Xingjiang & Ruan, Xinfeng & Zhang, Wenjun, 2021. "Dynamic portfolio choice and information trading with recursive utility," Economic Modelling, Elsevier, vol. 98(C), pages 154-167.
    6. Anis Matoussi & Hao Xing, 2016. "Convex duality for stochastic differential utility," Papers 1601.03562, arXiv.org.
    7. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    8. Hao Xing, 2017. "Consumption–investment optimization with Epstein–Zin utility in incomplete markets," Finance and Stochastics, Springer, vol. 21(1), pages 227-262, January.
    9. Shigeta, Yuki, 2022. "Quasi-hyperbolic discounting under recursive utility and consumption–investment decisions," Journal of Economic Theory, Elsevier, vol. 204(C).
    10. Zhao, Hui & Wang, Suxin, 2022. "Optimal investment and benefit adjustment problem for a target benefit pension plan with Cobb-Douglas utility and Epstein-Zin recursive utility," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1166-1180.
    11. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    12. Knut K. Aase & Petter Bjerksund, 2021. "The Optimal Spending Rate versus the Expected Real Return of a Sovereign Wealth Fund," JRFM, MDPI, vol. 14(9), pages 1-36, September.
    13. Wu, Hui & Ma, Chaoqun & Yue, Shengjie, 2017. "Momentum in strategic asset allocation," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 115-127.
    14. Hao Xing, 2015. "Consumption investment optimization with Epstein-Zin utility in incomplete markets," Papers 1501.04747, arXiv.org, revised Nov 2015.
    15. Johnson Kakeu, 2023. "Concerns for Long-Run Risks and Natural Resource Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 1051-1093, April.
    16. Du, Du, 2013. "General equilibrium pricing of currency and currency options," Journal of Financial Economics, Elsevier, vol. 110(3), pages 730-751.
    17. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    18. Holger Kraft & Frank Seifried & Mogens Steffensen, 2013. "Consumption-portfolio optimization with recursive utility in incomplete markets," Finance and Stochastics, Springer, vol. 17(1), pages 161-196, January.
    19. Roche, Hervé, 2011. "Asset prices in an exchange economy when agents have heterogeneous homothetic recursive preferences and no risk free bond is available," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 80-96, January.
    20. Tsai, Jerry & Wachter, Jessica A., 2018. "Pricing long-lived securities in dynamic endowment economies," Journal of Economic Theory, Elsevier, vol. 177(C), pages 848-878.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.01506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.