IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2003.00656.html
   My bibliography  Save this paper

Machine Learning Portfolio Allocation

Author

Listed:
  • Michael Pinelis
  • David Ruppert

Abstract

We find economically and statistically significant gains when using machine learning for portfolio allocation between the market index and risk-free asset. Optimal portfolio rules for time-varying expected returns and volatility are implemented with two Random Forest models. One model is employed in forecasting the sign probabilities of the excess return with payout yields. The second is used to construct an optimized volatility estimate. Reward-risk timing with machine learning provides substantial improvements over the buy-and-hold in utility, risk-adjusted returns, and maximum drawdowns. This paper presents a new theoretical basis and unifying framework for machine learning applied to both return- and volatility-timing.

Suggested Citation

  • Michael Pinelis & David Ruppert, 2020. "Machine Learning Portfolio Allocation," Papers 2003.00656, arXiv.org, revised Nov 2021.
  • Handle: RePEc:arx:papers:2003.00656
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2003.00656
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Michael C. Jensen, 1968. "The Performance Of Mutual Funds In The Period 1945–1964," Journal of Finance, American Finance Association, vol. 23(2), pages 389-416, May.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    5. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    6. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    7. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    8. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    9. Barroso, Pedro & Santa-Clara, Pedro, 2015. "Momentum has its moments," Journal of Financial Economics, Elsevier, vol. 116(1), pages 111-120.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Jacob Boudoukh & Roni Michaely & Matthew Richardson & Michael R. Roberts, 2007. "On the Importance of Measuring Payout Yield: Implications for Empirical Asset Pricing," Journal of Finance, American Finance Association, vol. 62(2), pages 877-915, April.
    12. Kandel, Shmuel & Stambaugh, Robert F, 1996. "On the Predictability of Stock Returns: An Asset-Allocation Perspective," Journal of Finance, American Finance Association, vol. 51(2), pages 385-424, June.
    13. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    14. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    15. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    16. Yong Bao, 2009. "Estimation Risk-Adjusted Sharpe Ratio and Fund Performance Ranking under a General Return Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 152-173, Spring.
    17. Moreira, Alan & Muir, Tyler, 2019. "Should Long-Term Investors Time Volatility?," Journal of Financial Economics, Elsevier, vol. 131(3), pages 507-527.
    18. Merton, Robert C, 1981. "On Market Timing and Investment Performance. I. An Equilibrium Theory of Value for Market Forecasts," The Journal of Business, University of Chicago Press, vol. 54(3), pages 363-406, July.
    19. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    20. Alan Moreira & Tyler Muir, 2017. "Volatility-Managed Portfolios," Journal of Finance, American Finance Association, vol. 72(4), pages 1611-1644, August.
    21. Kirby, Chris & Ostdiek, Barbara, 2012. "It’s All in the Timing: Simple Active Portfolio Strategies that Outperform Naïve Diversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(2), pages 437-467, April.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cederburg, Scott & O’Doherty, Michael S. & Wang, Feifei & Yan, Xuemin (Sterling), 2020. "On the performance of volatility-managed portfolios," Journal of Financial Economics, Elsevier, vol. 138(1), pages 95-117.
    2. Markus Leippold & Hanlin Yang, 2023. "Mixed‐frequency predictive regressions with parameter learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1955-1972, December.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    5. Hui Chen & Nengjiu Ju & Jianjun Miao, 2014. "Dynamic Asset Allocation with Ambiguous Return Predictability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(4), pages 799-823, October.
    6. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    7. Massimo Guidolin & Giovanna Nicodano, 2010. "Ex Post Portfolio Performance with Predictable Skewness and Kurtosis," Carlo Alberto Notebooks 191, Collegio Carlo Alberto.
    8. Doan, Bao & Papageorgiou, Nicolas & Reeves, Jonathan J. & Sherris, Michael, 2018. "Portfolio management with targeted constant market volatility," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 134-147.
    9. Guanhao Feng & Nicholas Polson, 2020. "Regularizing Bayesian predictive regressions," Journal of Asset Management, Palgrave Macmillan, vol. 21(7), pages 591-608, December.
    10. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    11. Yufeng Han, 2010. "On the Economic Value of Return Predictability," Annals of Economics and Finance, Society for AEF, vol. 11(1), pages 1-33, May.
    12. Spierdijk, Laura & Umar, Zaghum, 2014. "Stocks for the long run? Evidence from emerging markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 217-238.
    13. Barroso, Pedro & Detzel, Andrew, 2021. "Do limits to arbitrage explain the benefits of volatility-managed portfolios?," Journal of Financial Economics, Elsevier, vol. 140(3), pages 744-767.
    14. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    15. Michael Pinelis & David Ruppert, 2023. "Maximizing Portfolio Predictability with Machine Learning," Papers 2311.01985, arXiv.org.
    16. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    17. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    18. Wang, Feifei & Yan, Xuemin Sterling, 2021. "Downside risk and the performance of volatility-managed portfolios," Journal of Banking & Finance, Elsevier, vol. 131(C).
    19. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2017. "Predictability and diversification benefits of investing in commodity and currency futures," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 52-66.
    20. Nick Taylor, 2023. "The Determinants of Volatility Timing Performance," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1228-1257.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2003.00656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.