IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.09814.html
   My bibliography  Save this paper

Survey Bandits with Regret Guarantees

Author

Listed:
  • Sanath Kumar Krishnamurthy
  • Susan Athey

Abstract

We consider a variant of the contextual bandit problem. In standard contextual bandits, when a user arrives we get the user's complete feature vector and then assign a treatment (arm) to that user. In a number of applications (like healthcare), collecting features from users can be costly. To address this issue, we propose algorithms that avoid needless feature collection while maintaining strong regret guarantees.

Suggested Citation

  • Sanath Kumar Krishnamurthy & Susan Athey, 2020. "Survey Bandits with Regret Guarantees," Papers 2002.09814, arXiv.org.
  • Handle: RePEc:arx:papers:2002.09814
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.09814
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danielle Li & Lindsey R. Raymond & Peter Bergman, 2020. "Hiring as Exploration," NBER Working Papers 27736, National Bureau of Economic Research, Inc.
    2. Claudio Cardoso Flores & Marcelo Cunha Medeiros, 2020. "Online Action Learning in High Dimensions: A Conservative Perspective," Papers 2009.13961, arXiv.org, revised Mar 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.09814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.