IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.09565.html
   My bibliography  Save this paper

Adversarial Attacks on Machine Learning Systems for High-Frequency Trading

Author

Listed:
  • Micah Goldblum
  • Avi Schwarzschild
  • Ankit B. Patel
  • Tom Goldstein

Abstract

Algorithmic trading systems are often completely automated, and deep learning is increasingly receiving attention in this domain. Nonetheless, little is known about the robustness properties of these models. We study valuation models for algorithmic trading from the perspective of adversarial machine learning. We introduce new attacks specific to this domain with size constraints that minimize attack costs. We further discuss how these attacks can be used as an analysis tool to study and evaluate the robustness properties of financial models. Finally, we investigate the feasibility of realistic adversarial attacks in which an adversarial trader fools automated trading systems into making inaccurate predictions.

Suggested Citation

  • Micah Goldblum & Avi Schwarzschild & Ankit B. Patel & Tom Goldstein, 2020. "Adversarial Attacks on Machine Learning Systems for High-Frequency Trading," Papers 2002.09565, arXiv.org, revised Oct 2021.
  • Handle: RePEc:arx:papers:2002.09565
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.09565
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    2. Beck Alexander & Kim Young Shin Aaron & Rachev Svetlozar & Feindt Michael & Fabozzi Frank, 2013. "Empirical analysis of ARMA-GARCH models in market risk estimation on high-frequency US data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 167-177, April.
    3. David Byrd & Tucker Hybinette Balch, 2019. "Intra-day Equity Price Prediction using Deep Learning as a Measure of Market Efficiency," Papers 1908.08168, arXiv.org.
    4. James Angel & Douglas McCabe, 2013. "Fairness in Financial Markets: The Case of High Frequency Trading," Journal of Business Ethics, Springer, vol. 112(4), pages 585-595, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brice Corgnet & Mark DeSantis & Christoph Siemroth, 2023. "Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach," Working Papers 2313, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    2. Andrea Roncella & Ignacio Ferrero, 2022. "The Ethics of Financial Market Making and Its Implications for High-Frequency Trading," Journal of Business Ethics, Springer, vol. 181(1), pages 139-151, November.
    3. Khairul Zharif Zaharudin & Martin R. Young & Wei‐Huei Hsu, 2022. "High‐frequency trading: Definition, implications, and controversies," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 75-107, February.
    4. Kun Li, 2018. "Do high-frequency fleeting orders exacerbate market illiquidity?," Electronic Commerce Research, Springer, vol. 18(2), pages 241-255, June.
    5. David Byrd & Tucker Hybinette Balch, 2019. "Intra-day Equity Price Prediction using Deep Learning as a Measure of Market Efficiency," Papers 1908.08168, arXiv.org.
    6. Viktoria Dalko & Michael H. Wang, 2020. "High-frequency trading: Order-based innovation or manipulation?," Journal of Banking Regulation, Palgrave Macmillan, vol. 21(4), pages 289-298, December.
    7. Benos, Evangelos & Sagade, Satchit, 2012. "High-frequency trading behaviour and its impact on market quality: evidence from the UK equity market," Bank of England working papers 469, Bank of England.
    8. Bellia, Mario & Christensen, Kim & Kolokolov, Aleksey & Pelizzon, Loriana & Renò, Roberto, 2022. "Do designated market makers provide liquidity during a flash crash?," SAFE Working Paper Series 270, Leibniz Institute for Financial Research SAFE, revised 2022.
    9. Tamer Khraisha & Keren Arthur, 2018. "Can we have a general theory of financial innovation processes? A conceptual review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-27, December.
    10. Bruno Biais & Fany Declerck & Sophie Moinas, 2016. "Who supplies liquidity, how and when?," BIS Working Papers 563, Bank for International Settlements.
    11. Indriawan, Ivan & Martinez, Valeria & Tse, Yiuman, 2021. "The impact of the change in USDA announcement release procedures on agricultural commodity futures," Journal of Commodity Markets, Elsevier, vol. 23(C).
    12. Álvaro Cartea & José Penalva, 2012. "Where is the Value in High Frequency Trading?," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-46.
    13. NIdhi Aggarwal & Venkatesh Panchapagesan & Susan Thomas, 2022. "When is the Order to Trade Ratio fee effective?," Working Papers 8, xKDR.
    14. Kang, Jongho & Kang, Jangkoo & Kwon, Kyung Yoon, 2022. "Market versus limit orders of speculative high-frequency traders and price discovery," Research in International Business and Finance, Elsevier, vol. 63(C).
    15. Ahmed Baig & Nasim Sabah & Drew Winters, 2019. "Have Stock Prices become more Uniformly Distributed?," Economics Bulletin, AccessEcon, vol. 39(2), pages 1242-1250.
    16. Robert J. Kauffman & Yuzhou Hu & Dan Ma, 2015. "Will high-frequency trading practices transform the financial markets in the Asia Pacific Region?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-27, December.
    17. Uctum, Remzi & Renou-Maissant, Patricia & Prat, Georges & Lecarpentier-Moyal, Sylvie, 2017. "Persistence of announcement effects on the intraday volatility of stock returns: Evidence from individual data," Review of Financial Economics, Elsevier, vol. 35(C), pages 43-56.
    18. George Jiang & Ingrid Lo & Giorgio Valente, 2014. "High-Frequency Trading around Macroeconomic News Announcements: Evidence from the U.S. Treasury Market," Staff Working Papers 14-56, Bank of Canada.
    19. Aggarwal, Nidhi & Panchapagesan, Venkatesh & Thomas, Susan, 2023. "When is the order-to-trade ratio fee effective?," Journal of Financial Markets, Elsevier, vol. 62(C).
    20. Bank, Matthias & Baumann, Ralf H., 2016. "Price formation, market quality and the effects of reduced latency in the very short run," Research in International Business and Finance, Elsevier, vol. 37(C), pages 629-645.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.09565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.