IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.06227.html
   My bibliography  Save this paper

Detection of arbitrage opportunities in multi-asset derivatives markets

Author

Listed:
  • Antonis Papapantoleon
  • Paulo Yanez Sarmiento

Abstract

We are interested in the existence of equivalent martingale measures and the detection of arbitrage opportunities in markets where several multi-asset derivatives are traded simultaneously. More specifically, we consider a financial market with multiple traded assets whose marginal risk-neutral distributions are known, and assume that several derivatives written on these assets are traded simultaneously. In this setting, there is a bijection between the existence of an equivalent martingale measure and the existence of a copula that couples these marginals. Using this bijection and recent results on improved Fr\'echet-Hoeffding bounds in the presence of additional information on functionals of a copula by Lux and Papapantoleon [18], we can extend the results of Tavin [33] on the detection of arbitrage opportunities to the general multi-dimensional case. More specifically, we derive sufficient conditions for the absence of arbitrage and formulate an optimization problem for the detection of a possible arbitrage opportunity. This problem can be solved efficiently using numerical optimization routines. The most interesting practical outcome is the following: we can construct a financial market where each multi-asset derivative is traded within its own no-arbitrage interval, and yet when considered together an arbitrage opportunity may arise.

Suggested Citation

  • Antonis Papapantoleon & Paulo Yanez Sarmiento, 2020. "Detection of arbitrage opportunities in multi-asset derivatives markets," Papers 2002.06227, arXiv.org, revised Nov 2021.
  • Handle: RePEc:arx:papers:2002.06227
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.06227
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hans Buehler, 2006. "Expensive martingales," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 207-218.
    2. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    3. Cousot, Laurent, 2007. "Conditions on option prices for absence of arbitrage and exact calibration," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3377-3397, November.
    4. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    5. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    6. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    7. Thibaut Lux & Antonis Papapantoleon, 2016. "Improved Fr\'echet$-$Hoeffding bounds on $d$-copulas and applications in model-free finance," Papers 1602.08894, arXiv.org, revised Jun 2017.
    8. Puccetti Giovanni & Rüschendorf Ludger & Manko Dennis, 2016. "VaR bounds for joint portfolios with dependence constraints," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-14, December.
    9. Bertrand Tavin, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Post-Print hal-02313250, HAL.
    10. Peter Tankov, 2010. "Improved Frechet bounds and model-free pricing of multi-asset options," Papers 1004.4153, arXiv.org, revised Mar 2011.
    11. P. Carr & D. Madan, 2001. "Optimal positioning in derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 19-37.
    12. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariel Neufeld & Julian Sester, 2023. "Neural networks can detect model-free static arbitrage strategies," Papers 2306.16422, arXiv.org, revised Aug 2024.
    2. Jonathan Ansari & Eva Lütkebohmert & Ariel Neufeld & Julian Sester, 2024. "Improved robust price bounds for multi-asset derivatives under market-implied dependence information," Finance and Stochastics, Springer, vol. 28(4), pages 911-964, October.
    3. Jonathan Ansari & Eva Lutkebohmert & Ariel Neufeld & Julian Sester, 2022. "Improved Robust Price Bounds for Multi-Asset Derivatives under Market-Implied Dependence Information," Papers 2204.01071, arXiv.org, revised Sep 2023.
    4. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papapantoleon Antonis & Yanez Sarmiento Paulo, 2021. "Detection of arbitrage opportunities in multi-asset derivatives markets," Dependence Modeling, De Gruyter, vol. 9(1), pages 439-459, January.
    2. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    3. Stefan Gerhold & I. Cetin Gulum, 2016. "Consistency of option prices under bid-ask spreads," Papers 1608.05585, arXiv.org, revised Jul 2019.
    4. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    5. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    6. Beatrice Acciaio & Mathias Beiglbock & Friedrich Penkner & Walter Schachermayer, 2013. "A model-free version of the fundamental theorem of asset pricing and the super-replication theorem," Papers 1301.5568, arXiv.org, revised Mar 2013.
    7. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    8. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    9. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and repairing arbitrage in traded option prices," Papers 2008.09454, arXiv.org.
    10. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    11. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    12. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    13. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    14. David Hobson & Anthony Neuberger, 2016. "On the value of being American," Papers 1604.02269, arXiv.org.
    15. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    16. Peter Carr & Lorenzo Torricelli, 2021. "Additive logistic processes in option pricing," Finance and Stochastics, Springer, vol. 25(4), pages 689-724, October.
    17. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    18. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    19. David Hobson & Martin Klimmek, 2015. "Robust price bounds for the forward starting straddle," Finance and Stochastics, Springer, vol. 19(1), pages 189-214, January.
    20. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.06227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.