IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.00225.html
   My bibliography  Save this paper

Insights on the Theory of Robust Games

Author

Listed:
  • Giovanni Paolo Crespi
  • Davide Radi
  • Matteo Rocca

Abstract

A robust game is a distribution-free model to handle ambiguity generated by a bounded set of possible realizations of the values of players' payoff functions. The players are worst-case optimizers and a solution, called robust-optimization equilibrium, is guaranteed by standard regularity conditions. The paper investigates the sensitivity to the level of uncertainty of this equilibrium. Specifically, we prove that it is an epsilon-Nash equilibrium of the nominal counterpart game, where the epsilon-approximation measures the extra profit that a player would obtain by reducing his level of uncertainty. Moreover, given an epsilon-Nash equilibrium of a nominal game, we prove that it is always possible to introduce uncertainty such that the epsilon-Nash equilibrium is a robust-optimization equilibrium. An example shows that a robust Cournot duopoly model can admit multiple and asymmetric robust-optimization equilibria despite only a symmetric Nash equilibrium exists for the nominal counterpart game.

Suggested Citation

  • Giovanni Paolo Crespi & Davide Radi & Matteo Rocca, 2020. "Insights on the Theory of Robust Games," Papers 2002.00225, arXiv.org.
  • Handle: RePEc:arx:papers:2002.00225
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.00225
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Radi & Laura Gardini, 2023. "Ambiguity aversion as a route to randomness in a duopoly game," Papers 2311.11366, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.00225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.