IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.10640.html
   My bibliography  Save this paper

Pricing of the Geometric Asian Options Under a Multifactor Stochastic Volatility Model

Author

Listed:
  • Gifty Malhotra
  • R. Srivastava
  • H. C. Taneja

Abstract

This paper focuses on the pricing of continuous geometric Asian options (GAOs) under a multifactor stochastic volatility model. The model considers fast and slow mean reverting factors of volatility, where slow volatility factor is approximated by a quadratic arc. The asymptotic expansion of the price function is assumed, and the first order price approximation is derived using the perturbation techniques for both floating and fixed strike GAOs. Much simplified pricing formulae for the GAOs are obtained in this multifactor stochastic volatility framework. The zeroth order term in the price approximation is the modified Black-Scholes price for the GAOs. This modified price is expressed in terms of the Black-Scholes price for the GAOs. The accuracy of the approximate option pricing formulae is established, and the model parameter is also estimated by capturing the volatility smiles.

Suggested Citation

  • Gifty Malhotra & R. Srivastava & H. C. Taneja, 2019. "Pricing of the Geometric Asian Options Under a Multifactor Stochastic Volatility Model," Papers 1912.10640, arXiv.org.
  • Handle: RePEc:arx:papers:1912.10640
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.10640
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    2. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 377-389, September.
    3. Hoi Ying Wong & Ying Lok Cheung, 2004. "Geometric Asian options: valuation and calibration with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 301-314.
    4. Bin Peng, 2006. "Pricing Geometric Asian Options under the CEV Process," International Economic Journal, Taylor & Francis Journals, vol. 20(4), pages 515-522.
    5. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    6. Jean-Pierre Fouque & Chuan-Hsiang Han, 2003. "Pricing Asian options with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(5), pages 353-362.
    7. Jin E. Zhang, 2003. "Pricing continuously sampled Asian options with perturbation method," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(6), pages 535-560, June.
    8. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    2. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    3. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    4. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    5. Chueh-Yung Tsao & Chao-Ching Liu, 2012. "Asian Options with Credit Risks: Pricing and Sensitivity Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(S3), pages 96-115, September.
    6. Chiu, Chun-Yuan & Dai, Tian-Shyr & Lyuu, Yuh-Dauh, 2015. "Pricing Asian option by the FFT with higher-order error convergence rate under Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 418-437.
    7. Chih-Chen Hsu & Chung-Gee Lin & Tsung-Jung Kuo, 2020. "Pricing of Arithmetic Asian Options under Stochastic Volatility Dynamics: Overcoming the Risks of High-Frequency Trading," Mathematics, MDPI, vol. 8(12), pages 1-16, December.
    8. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    9. Hideharu Funahashi & Masaaki Kijima, 2017. "A unified approach for the pricing of options relating to averages," Review of Derivatives Research, Springer, vol. 20(3), pages 203-229, October.
    10. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "Analytical valuation for geometric Asian options in illiquid markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 175-191.
    11. Jinke Zhou & Xiaolu Wang, 2008. "Accurate closed‐form approximation for pricing Asian and basket options," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 343-358, July.
    12. Kim, Bara & Kim, Jeongsim & Yoon, Hyungkuk & Lee, Jinyoung, 2024. "Pricing of discretely sampled arithmetic Asian options, under the Hull–White interest rate model," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    13. Hideharu Funahashi & Masaaki Kijima, 2013. "An Extension of the Chaos Expansion Approximation for the Pricing of Exotic Basket Options ," KIER Working Papers 857, Kyoto University, Institute of Economic Research.
    14. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2014. "Geometric Asian Option Pricing in General Affine Stochastic Volatility Models with Jumps," Papers 1407.2514, arXiv.org.
    15. Kyungsub Lee, 2013. "Recursive formula for arithmetic Asian option prices," Papers 1311.4969, arXiv.org.
    16. Susana Alvarez Diez & Samuel Baixauli & Luis Eduardo Girón, 2019. "Valoración de opciones call asiáticas Promedio Aritmético usando Taylor Estocástico 1.5," Working Papers 44, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    17. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    18. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2017. "Most-likely-path in Asian option pricing under local volatility models," Papers 1706.02408, arXiv.org, revised Aug 2018.
    19. Susana Alvarez Diez & Samuel Baixauli & Luis Eduardo Girón, 2019. "Valoración de Opciones Call Asiáticas Promedio Aritmético bajo Movimiento Browniano Logístico," Working Papers 46, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    20. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.10640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.