IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1908.08036.html
   My bibliography  Save this paper

Deep Reinforcement Learning for Foreign Exchange Trading

Author

Listed:
  • Yun-Cheng Tsai
  • Chun-Chieh Wang

Abstract

Reinforcement learning can interact with the environment and is suitable for applications in decision control systems. Therefore, we used the reinforcement learning method to establish a foreign exchange transaction, avoiding the long-standing problem of unstable trends in deep learning predictions. In the system design, we optimized the Sure-Fire statistical arbitrage policy, set three different actions, encoded the continuous price over a period of time into a heat-map view of the Gramian Angular Field (GAF) and compared the Deep Q Learning (DQN) and Proximal Policy Optimization (PPO) algorithms. To test feasibility, we analyzed three currency pairs, namely EUR/USD, GBP/USD, and AUD/USD. We trained the data in units of four hours from 1 August 2018 to 30 November 2018 and tested model performance using data between 1 December 2018 and 31 December 2018. The test results of the various models indicated that favorable investment performance was achieved as long as the model was able to handle complex and random processes and the state was able to describe the environment, validating the feasibility of reinforcement learning in the development of trading strategies.

Suggested Citation

  • Yun-Cheng Tsai & Chun-Chieh Wang, 2019. "Deep Reinforcement Learning for Foreign Exchange Trading," Papers 1908.08036, arXiv.org, revised Jun 2020.
  • Handle: RePEc:arx:papers:1908.08036
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1908.08036
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Dominik Stasiak, 2020. "Candlestick—The Main Mistake of Economy Research in High Frequency Markets," IJFS, MDPI, vol. 8(4), pages 1-15, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1908.08036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.