IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.03355.html
   My bibliography  Save this paper

Improving Detection of Credit Card Fraudulent Transactions using Generative Adversarial Networks

Author

Listed:
  • Hung Ba

Abstract

In this study, we employ Generative Adversarial Networks as an oversampling method to generate artificial data to assist with the classification of credit card fraudulent transactions. GANs is a generative model based on the idea of game theory, in which a generator G and a discriminator D are trying to outsmart each other. The objective of the generator is to confuse the discriminator. The objective of the discriminator is to distinguish the instances coming from the generator and the instances coming from the original dataset. By training GANs on a set of credit card fraudulent transactions, we are able to improve the discriminatory power of classifiers. The experiment results show that the Wasserstein-GAN is more stable in training and produce more realistic fraudulent transactions than the other GANs. On the other hand, the conditional version of GANs in which labels are set by k-means clustering does not necessarily improve the non-conditional versions of GANs.

Suggested Citation

  • Hung Ba, 2019. "Improving Detection of Credit Card Fraudulent Transactions using Generative Adversarial Networks," Papers 1907.03355, arXiv.org.
  • Handle: RePEc:arx:papers:1907.03355
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.03355
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.03355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.