IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.06389.html
   My bibliography  Save this paper

Long-run risk sensitive dyadic impulse control

Author

Listed:
  • Marcin Pitera
  • {L}ukasz Stettner

Abstract

In this paper long-run risk sensitive optimisation problem is studied with dyadic impulse control applied to continuous-time Feller-Markov process. In contrast to the existing literature, focus is put on unbounded and non-uniformly ergodic case by adapting the weight norm approach. In particular, it is shown how to combine geometric drift with local minorisation property in order to extend local span-contraction approach when the process as well as the linked reward/cost functions are unbounded. For any predefined risk-aversion parameter, the existence of solution to suitable Bellman equation is shown and linked to the underlying stochastic control problem. For completeness, examples of uncontrolled processes that satisfy the geometric drift assumption are provided.

Suggested Citation

  • Marcin Pitera & {L}ukasz Stettner, 2019. "Long-run risk sensitive dyadic impulse control," Papers 1906.06389, arXiv.org.
  • Handle: RePEc:arx:papers:1906.06389
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.06389
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hideo Nagai, 2007. "A Remark on Impulse Control Problems with Risk-sensitive Criteria," World Scientific Book Chapters, in: Jiro Akahori & Shigeyoshi Ogawa & Shinzo Watanabe (ed.), Stochastic Processes And Applications To Mathematical Finance, chapter 13, pages 219-232, World Scientific Publishing Co. Pte. Ltd..
    2. Marcin Pitera & Łukasz Stettner, 2016. "Long run risk sensitive portfolio with general factors," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 265-293, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damian Jelito & Marcin Pitera & {L}ukasz Stettner, 2019. "Long-run risk sensitive impulse control," Papers 1912.02488, arXiv.org, revised Apr 2020.
    2. Jelito, Damian & Pitera, Marcin & Stettner, Łukasz, 2021. "Risk sensitive optimal stopping," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 125-144.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damian Jelito & Marcin Pitera & {L}ukasz Stettner, 2019. "Long-run risk sensitive impulse control," Papers 1912.02488, arXiv.org, revised Apr 2020.
    2. Carlos Camilo-Garay & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2022. "Contractive Approximations in Risk-Sensitive Average Semi-Markov Decision Chains on a Finite State Space," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 271-291, January.
    3. Rolando Cavazos-Cadena, 2018. "Characterization of the Optimal Risk-Sensitive Average Cost in Denumerable Markov Decision Chains," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 1025-1050, August.
    4. Julio Saucedo-Zul & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2020. "A Discounted Approach in Communicating Average Markov Decision Chains Under Risk-Aversion," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 585-606, November.
    5. Marcin Pitera & Mikl'os R'asonyi, 2023. "Utility-based acceptability indices," Papers 2310.02014, arXiv.org.
    6. Gustavo Portillo-Ramírez & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2023. "Contractive approximations in average Markov decision chains driven by a risk-seeking controller," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 75-91, August.
    7. Marcin Pitera & {L}ukasz Stettner, 2022. "Discrete-time risk sensitive portfolio optimization with proportional transaction costs," Papers 2201.02828, arXiv.org.
    8. Rubén Blancas-Rivera & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2020. "Discounted approximations in risk-sensitive average Markov cost chains with finite state space," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 241-268, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.06389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.