IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.05494.html
   My bibliography  Save this paper

Time scales in stock markets

Author

Listed:
  • Ajit Mahata
  • Md Nurujjaman

Abstract

Different investment strategies are adopted in short-term and long-term depending on the time scales, even though time scales are adhoc in nature. Empirical mode decomposition based Hurst exponent analysis and variance technique have been applied to identify the time scales for short-term and long-term investment from the decomposed intrinsic mode functions(IMF). Hurst exponent ($H$) is around 0.5 for the IMFs with time scales from few days to 3 months, and $H\geq0.75$ for the IMFs with the time scales $\geq5$ months. Short term time series [$X_{ST}(t)$] with time scales from few days to 3 months and $H~0.5$ and long term time series [$X_{LT}(t)$] with time scales $\geq5$ and $H\geq0.75$, which represent the dynamics of the market, are constructed from the IMFs. The $X_{ST}(t)$ and $X_{LT}(t)$ show that the market is random in short-term and correlated in long term. The study also show that the $X_{LT}(t)$ is correlated with fundamentals of the company. The analysis will be useful for investors to design the investment and trading strategy.

Suggested Citation

  • Ajit Mahata & Md Nurujjaman, 2019. "Time scales in stock markets," Papers 1906.05494, arXiv.org.
  • Handle: RePEc:arx:papers:1906.05494
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.05494
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahata, Ajit & Bal, Debi Prasad & Nurujjaman, Md, 2020. "Identification of short-term and long-term time scales in stock markets and effect of structural break," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.05494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.