IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.03507.html
   My bibliography  Save this paper

Deep learning calibration of option pricing models: some pitfalls and solutions

Author

Listed:
  • A Itkin

Abstract

Recent progress in the field of artificial intelligence, machine learning and also in computer industry resulted in the ongoing boom of using these techniques as applied to solving complex tasks in both science and industry. Same is, of course, true for the financial industry and mathematical finance. In this paper we consider a classical problem of mathematical finance - calibration of option pricing models to market data, as it was recently drawn some attention of the financial society in the context of deep learning and artificial neural networks. We highlight some pitfalls in the existing approaches and propose resolutions that improve both performance and accuracy of calibration. We also address a problem of no-arbitrage pricing when using a trained neural net, that is currently ignored in the literature.

Suggested Citation

  • A Itkin, 2019. "Deep learning calibration of option pricing models: some pitfalls and solutions," Papers 1906.03507, arXiv.org.
  • Handle: RePEc:arx:papers:1906.03507
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.03507
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch, 2020. "Solving path dependent PDEs with LSTM networks and path signatures," Papers 2011.10630, arXiv.org.
    2. Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
    3. Peter Carr & Andrey Itkin & Sasha Stoikov, 2019. "A model-free backward and forward nonlinear PDEs for implied volatility," Papers 1907.07305, arXiv.org.
    4. Kentaro Hoshisashi & Carolyn E. Phelan & Paolo Barucca, 2023. "No-Arbitrage Deep Calibration for Volatility Smile and Skewness," Papers 2310.16703, arXiv.org, revised Jan 2024.
    5. Weilong Fu & Ali Hirsa, 2022. "Solving barrier options under stochastic volatility using deep learning," Papers 2207.00524, arXiv.org.
    6. Muyang Ge & Shen Zhou & Shijun Luo & Boping Tian, 2021. "3D Tensor-based Deep Learning Models for Predicting Option Price," Papers 2106.02916, arXiv.org, revised Sep 2021.
    7. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    8. Fabio Baschetti & Giacomo Bormetti & Pietro Rossi, 2023. "Deep calibration with random grids," Papers 2306.11061, arXiv.org, revised Jan 2024.
    9. Kentaro Hoshisashi & Carolyn E. Phelan & Paolo Barucca, 2024. "Whack-a-mole Online Learning: Physics-Informed Neural Network for Intraday Implied Volatility Surface," Papers 2411.02375, arXiv.org.
    10. Marc Chataigner & Stéphane Crépey & Matthew Dixon, 2020. "Deep Local Volatility," Risks, MDPI, vol. 8(3), pages 1-18, August.
    11. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    12. Marc Chataigner & St'ephane Cr'epey & Matthew Dixon, 2020. "Deep Local Volatility," Papers 2007.10462, arXiv.org.
    13. Andrew Na & Meixin Zhang & Justin Wan, 2023. "Computing Volatility Surfaces using Generative Adversarial Networks with Minimal Arbitrage Violations," Papers 2304.13128, arXiv.org, revised Dec 2023.
    14. Ali Hirsa & Weilong Fu, 2020. "An unsupervised deep learning approach in solving partial integro-differential equations," Papers 2006.15012, arXiv.org, revised Dec 2020.
    15. Bo Yuan & Damiano Brigo & Antoine Jacquier & Nicola Pede, 2024. "Deep learning interpretability for rough volatility," Papers 2411.19317, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.03507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.