IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.03232.html
   My bibliography  Save this paper

Style Transfer with Time Series: Generating Synthetic Financial Data

Author

Listed:
  • Brandon Da Silva
  • Sylvie Shang Shi

Abstract

Training deep learning models that generalize well to live deployment is a challenging problem in the financial markets. The challenge arises because of high dimensionality, limited observations, changing data distributions, and a low signal-to-noise ratio. High dimensionality can be dealt with using robust feature selection or dimensionality reduction, but limited observations often result in a model that overfits due to the large parameter space of most deep neural networks. We propose a generative model for financial time series, which allows us to train deep learning models on millions of simulated paths. We show that our generative model is able to create realistic paths that embed the underlying structure of the markets in a way stochastic processes cannot.

Suggested Citation

  • Brandon Da Silva & Sylvie Shang Shi, 2019. "Style Transfer with Time Series: Generating Synthetic Financial Data," Papers 1906.03232, arXiv.org, revised Dec 2019.
  • Handle: RePEc:arx:papers:1906.03232
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.03232
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2023. "Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction," Papers 2309.00073, arXiv.org, revised Oct 2023.
    2. Michael Meiser & Ingo Zinnikus, 2024. "A Survey on the Use of Synthetic Data for Enhancing Key Aspects of Trustworthy AI in the Energy Domain: Challenges and Opportunities," Energies, MDPI, vol. 17(9), pages 1-29, April.
    3. Song Wei & Andrea Coletta & Svitlana Vyetrenko & Tucker Balch, 2023. "INTAGS: Interactive Agent-Guided Simulation," Papers 2309.01784, arXiv.org, revised Nov 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.03232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.