IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.03119.html
   My bibliography  Save this paper

A comparison principle between rough and non-rough Heston models - with applications to the volatility surface

Author

Listed:
  • Martin Keller-Ressel
  • Assad Majid

Abstract

We present a number of related comparison results, which allow to compare moment explosion times, moment generating functions and critical moments between rough and non-rough Heston models of stochastic volatility. All results are based on a comparison principle for certain non-linear Volterra integral equations. Our upper bound for the moment explosion time is different from the bound introduced by Gerhold, Gerstenecker and Pinter (2018) and tighter for typical parameter values. The results can be directly transferred to a comparison principle for the asymptotic slope of implied volatility between rough and non-rough Heston models. This principle shows that the ratio of implied volatility slopes in the rough vs. the non-rough Heston model increases at least with power-law behavior for small maturities.

Suggested Citation

  • Martin Keller-Ressel & Assad Majid, 2019. "A comparison principle between rough and non-rough Heston models - with applications to the volatility surface," Papers 1906.03119, arXiv.org.
  • Handle: RePEc:arx:papers:1906.03119
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.03119
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Gerhold & Christoph Gerstenecker & Arpad Pinter, 2019. "Moment explosions in the rough Heston model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 575-608, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.03119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.