A Statistical Recurrent Stochastic Volatility Model for Stock Markets
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhengkun Li & Minh-Ngoc Tran & Chao Wang & Richard Gerlach & Junbin Gao, 2020. "A Bayesian Long Short-Term Memory Model for Value at Risk and Expected Shortfall Joint Forecasting," Papers 2001.08374, arXiv.org, revised May 2021.
- Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
- Nguyen, Hoang & Virbickaitė, Audronė, 2023.
"Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models,"
Energy Economics, Elsevier, vol. 124(C).
- Nguyen, Hoang & Virbickaite, Audrone, 2022. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Working Papers 2022:5, Örebro University, School of Business.
- Martin Magris & Alexandros Iosifidis, 2023. "Variational Inference for GARCH-family Models," Papers 2310.03435, arXiv.org.
- Rangika Peiris & Minh-Ngoc Tran & Chao Wang & Richard Gerlach, 2024. "Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model," Papers 2408.13588, arXiv.org.
- Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
- Mateusz Buczyński & Marcin Chlebus, 2021. "GARCHNet - Value-at-Risk forecasting with novel approach to GARCH models based on neural networks," Working Papers 2021-08, Faculty of Economic Sciences, University of Warsaw.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2019-07-22 (Econometrics)
- NEP-ETS-2019-07-22 (Econometric Time Series)
- NEP-FMK-2019-07-22 (Financial Markets)
- NEP-FOR-2019-07-22 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.02884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.