IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.01427.html
   My bibliography  Save this paper

Optimal Dynamic Strategies on Gaussian Returns

Author

Listed:
  • Nick Firoozye
  • Adriano Koshiyama

Abstract

Dynamic trading strategies, in the spirit of trend-following or mean-reversion, represent an only partly understood but lucrative and pervasive area of modern finance. Assuming Gaussian returns and Gaussian dynamic weights or signals, (e.g., linear filters of past returns, such as simple moving averages, exponential weighted moving averages, forecasts from ARIMA models), we are able to derive closed-form expressions for the first four moments of the strategy's returns, in terms of correlations between the random signals and unknown future returns. By allowing for randomness in the asset-allocation and modelling the interaction of strategy weights with returns, we demonstrate that positive skewness and excess kurtosis are essential components of all positive Sharpe dynamic strategies, which is generally observed empirically; demonstrate that total least squares (TLS) or orthogonal least squares is more appropriate than OLS for maximizing the Sharpe ratio, while canonical correlation analysis (CCA) is similarly appropriate for the multi-asset case; derive standard errors on Sharpe ratios which are tighter than the commonly used standard errors from Lo; and derive standard errors on the skewness and kurtosis of strategies, apparently new results. We demonstrate these results are applicable asymptotically for a wide range of stationary time-series.

Suggested Citation

  • Nick Firoozye & Adriano Koshiyama, 2019. "Optimal Dynamic Strategies on Gaussian Returns," Papers 1906.01427, arXiv.org.
  • Handle: RePEc:arx:papers:1906.01427
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.01427
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.01427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.