IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.04486.html
   My bibliography  Save this paper

Trade Selection with Supervised Learning and OCA

Author

Listed:
  • David Saltiel
  • Eric Benhamou

Abstract

In recent years, state-of-the-art methods for supervised learning have exploited increasingly gradient boosting techniques, with mainstream efficient implementations such as xgboost or lightgbm. One of the key points in generating proficient methods is Feature Selection (FS). It consists in selecting the right valuable effective features. When facing hundreds of these features, it becomes critical to select best features. While filter and wrappers methods have come to some maturity, embedded methods are truly necessary to find the best features set as they are hybrid methods combining features filtering and wrapping. In this work, we tackle the problem of finding through machine learning best a priori trades from an algorithmic strategy. We derive this new method using coordinate ascent optimization and using block variables. We compare our method to Recursive Feature Elimination (RFE) and Binary Coordinate Ascent (BCA). We show on a real life example the capacity of this method to select good trades a priori. Not only this method outperforms the initial trading strategy as it avoids taking loosing trades, it also surpasses other method, having the smallest feature set and the highest score at the same time. The interest of this method goes beyond this simple trade classification problem as it is a very general method to determine the optimal feature set using some information about features relationship as well as using coordinate ascent optimization.

Suggested Citation

  • David Saltiel & Eric Benhamou, 2018. "Trade Selection with Supervised Learning and OCA," Papers 1812.04486, arXiv.org.
  • Handle: RePEc:arx:papers:1812.04486
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.04486
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Goldstein & Tina Viljoen & P. Joakim Westerholm & Hui Zheng, 2014. "Algorithmic Trading, Liquidity, and Price Discovery: An Intraday Analysis of the SPI 200 Futures," The Financial Review, Eastern Finance Association, vol. 49(2), pages 245-270, May.
    2. Mauricio Labadie & Charles-Albert Lehalle, 2010. "Optimal algorithmic trading and market microstructure," Working Papers hal-00590283, HAL.
    3. Dimitrios Vezeris & Themistoklis Kyrgos & Christos Schinas, 2018. "Take Profit and Stop Loss Trading Strategies Comparison in Combination with an MACD Trading System," JRFM, MDPI, vol. 11(3), pages 1-23, September.
    4. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatch, Brian C. & Johnson, Shane A. & Wang, Qin Emma & Zhang, Jun, 2021. "Algorithmic trading and firm value," Journal of Banking & Finance, Elsevier, vol. 125(C).
    2. Jurich, Stephen N. & Mishra, Ajay Kumar & Parikh, Bhavik, 2020. "Indecisive algos: Do limit order revisions increase market load?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
    3. Zhou, Hao & Kalev, Petko S. & Frino, Alex, 2020. "Algorithmic trading in turbulent markets," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    4. Bellia, Mario & Christensen, Kim & Kolokolov, Aleksey & Pelizzon, Loriana & Renò, Roberto, 2022. "Do designated market makers provide liquidity during a flash crash?," SAFE Working Paper Series 270, Leibniz Institute for Financial Research SAFE, revised 2022.
    5. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    6. Joseph, Andreas & Vasios, Michalis, 2022. "OTC Microstructure in a period of stress: A Multi-layered network approach," Journal of Banking & Finance, Elsevier, vol. 138(C).
    7. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    8. Brice Corgnet & Mark DeSantis & Christoph Siemroth, 2023. "Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach," Working Papers 2313, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    9. Ya‐Kai Chang & Robin K. Chou, 2022. "Algorithmic trading and market quality: Evidence from the Taiwan index futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1837-1855, October.
    10. Breckenfelder, Johannes, 2024. "Competition among high-frequency traders and market quality," Journal of Economic Dynamics and Control, Elsevier, vol. 166(C).
    11. Jin, Miao & Liu, Yu-Jane & Meng, Juanjuan, 2019. "Fat-finger event and risk-taking behavior," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 126-143.
    12. Taiga Saito & Takanori Adachi & Teruo Nakatsuma & Akihiko Takahashi & Hiroshi Tsuda & Naoyuki Yoshino, 2018. "Trading and Ordering Patterns of Market Participants in High Frequency Trading Environment: Empirical Study in the Japanese Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(3), pages 179-220, September.
    13. Gunther Capelle-Blancard, 2018. "What is the Point of (the Hundreds of Thousands of Billions of) Stock Transactions?," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 60(1), pages 15-33, March.
    14. Phiri, Andrew, 2017. "Threshold convergence between the federal fund rate and South African equity returns around the colocation period," Business and Economic Horizons (BEH), Prague Development Center (PRADEC), vol. 13(1).
    15. Maarten P. Scholl & Anisoara Calinescu & J. Doyne Farmer, 2021. "How market ecology explains market malfunction," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(26), pages 2015574118-, June.
    16. Hagströmer, Björn, 2021. "Bias in the effective bid-ask spread," Journal of Financial Economics, Elsevier, vol. 142(1), pages 314-337.
    17. Bizzozero, Paolo & Flepp, Raphael & Franck, Egon, 2018. "The effect of fast trading on price discovery and efficiency: Evidence from a betting exchange," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 126-143.
    18. Xintong Wang & Christopher Hoang & Yevgeniy Vorobeychik & Michael P. Wellman, 2021. "Spoofing the Limit Order Book: A Strategic Agent-Based Analysis," Games, MDPI, vol. 12(2), pages 1-43, May.
    19. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    20. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.04486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.