IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.08264.html
   My bibliography  Save this paper

Quantile Regression Under Memory Constraint

Author

Listed:
  • Xi Chen
  • Weidong Liu
  • Yichen Zhang

Abstract

This paper studies the inference problem in quantile regression (QR) for a large sample size $n$ but under a limited memory constraint, where the memory can only store a small batch of data of size $m$. A natural method is the na\"ive divide-and-conquer approach, which splits data into batches of size $m$, computes the local QR estimator for each batch, and then aggregates the estimators via averaging. However, this method only works when $n=o(m^2)$ and is computationally expensive. This paper proposes a computationally efficient method, which only requires an initial QR estimator on a small batch of data and then successively refines the estimator via multiple rounds of aggregations. Theoretically, as long as $n$ grows polynomially in $m$, we establish the asymptotic normality for the obtained estimator and show that our estimator with only a few rounds of aggregations achieves the same efficiency as the QR estimator computed on all the data. Moreover, our result allows the case that the dimensionality $p$ goes to infinity. The proposed method can also be applied to address the QR problem under distributed computing environment (e.g., in a large-scale sensor network) or for real-time streaming data.

Suggested Citation

  • Xi Chen & Weidong Liu & Yichen Zhang, 2018. "Quantile Regression Under Memory Constraint," Papers 1810.08264, arXiv.org.
  • Handle: RePEc:arx:papers:1810.08264
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.08264
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lanjue & Zhou, Yong, 2020. "Quantile regression in big data: A divide and conquer based strategy," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.08264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.