IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.02815.html
   My bibliography  Save this paper

A General Sensitivity Analysis Approach for Demand Response Optimizations

Author

Listed:
  • Ding Xiang
  • Ermin Wei

Abstract

It is well-known that demand response can improve the system efficiency as well as lower consumers' (prosumers') electricity bills. However, it is not clear how we can either qualitatively identify the prosumer with the most impact potential or quantitatively estimate each prosumer's contribution to the total social welfare improvement when additional resource capacity/flexibility is introduced to the system with demand response, such as allowing net-selling behavior. In this work, we build upon existing literature on the electricity market, which consists of price-taking prosumers each with various appliances, an electric utility company and a social welfare optimizing distribution system operator, to design a general sensitivity analysis approach (GSAA) that can estimate the potential of each consumer's contribution to the social welfare when given more resource capacity. GSAA is based on existence of an efficient competitive equilibrium, which we establish in the paper. When prosumers' utility functions are quadratic, GSAA can give closed forms characterization on social welfare improvement based on duality analysis. Furthermore, we extend GSAA to a general convex settings, i.e., utility functions with strong convexity and Lipschitz continuous gradient. Even without knowing the specific forms the utility functions, we can derive upper and lower bounds of the social welfare improvement potential of each prosumer, when extra resource is introduced. For both settings, several applications and numerical examples are provided: including extending AC comfort zone, ability of EV to discharge and net selling. The estimation results show that GSAA can be used to decide how to allocate potentially limited market resources in the most impactful way.

Suggested Citation

  • Ding Xiang & Ermin Wei, 2018. "A General Sensitivity Analysis Approach for Demand Response Optimizations," Papers 1810.02815, arXiv.org.
  • Handle: RePEc:arx:papers:1810.02815
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.02815
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. O׳Connell, Niamh & Pinson, Pierre & Madsen, Henrik & O׳Malley, Mark, 2014. "Benefits and challenges of electrical demand response: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 686-699.
    2. Zugno, Marco & Morales, Juan Miguel & Pinson, Pierre & Madsen, Henrik, 2013. "A bilevel model for electricity retailers' participation in a demand response market environment," Energy Economics, Elsevier, vol. 36(C), pages 182-197.
    3. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    2. Knudsen, Michael Dahl & Georges, Laurent & Skeie, Kristian Stenerud & Petersen, Steffen, 2021. "Experimental test of a black-box economic model predictive control for residential space heating," Applied Energy, Elsevier, vol. 298(C).
    3. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    4. Fatras, Nicolas & Ma, Zheng & Jørgensen, Bo Nørregaard, 2022. "Process-to-market matrix mapping: A multi-criteria evaluation framework for industrial processes’ electricity market participation feasibility," Applied Energy, Elsevier, vol. 313(C).
    5. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    6. Gjorgievski, Vladimir Z. & Markovska, Natasa & Abazi, Alajdin & Duić, Neven, 2021. "The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Klaassen, E.A.M. & van Gerwen, R.J.F. & Frunt, J. & Slootweg, J.G., 2017. "A methodology to assess demand response benefits from a system perspective: A Dutch case study," Utilities Policy, Elsevier, vol. 44(C), pages 25-37.
    8. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Toward residential flexibility—Consumer willingness to enroll household loads in demand response," Applied Energy, Elsevier, vol. 342(C).
    9. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    10. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    11. Devenish, Anna, 2023. "Institutional and contextual drivers of and barriers to incentive-based demand response: A comparative case study in the Pacific Northwest," Utilities Policy, Elsevier, vol. 84(C).
    12. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    14. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    15. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    16. Stede, Jan & Arnold, Karin & Dufter, Christa & Holtz, Georg & von Roon, Serafin & Richstein, Jörn C., 2020. "The role of aggregators in facilitating industrial demand response: Evidence from Germany," Energy Policy, Elsevier, vol. 147(C).
    17. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Fatras, Nicolas & Ma, Zheng & Duan, Hongbo & Jørgensen, Bo Nørregaard, 2022. "A systematic review of electricity market liberalisation and its alignment with industrial consumer participation: A comparison between the Nordics and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Xu, Bing & Nayak, Amar & Gray, David & Ouenniche, Jamal, 2016. "Assessing energy business cases implemented in the North Sea Region and strategy recommendations," Applied Energy, Elsevier, vol. 172(C), pages 360-371.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.02815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.