IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.01278.html
   My bibliography  Save this paper

Deep Factor Model

Author

Listed:
  • Kei Nakagawa
  • Takumi Uchida
  • Tomohisa Aoshima

Abstract

We propose to represent a return model and risk model in a unified manner with deep learning, which is a representative model that can express a nonlinear relationship. Although deep learning performs quite well, it has significant disadvantages such as a lack of transparency and limitations to the interpretability of the prediction. This is prone to practical problems in terms of accountability. Thus, we construct a multifactor model by using interpretable deep learning. We implement deep learning as a return model to predict stock returns with various factors. Then, we present the application of layer-wise relevance propagation (LRP) to decompose attributes of the predicted return as a risk model. By applying LRP to an individual stock or a portfolio basis, we can determine which factor contributes to prediction. We call this model a deep factor model. We then perform an empirical analysis on the Japanese stock market and show that our deep factor model has better predictive capability than the traditional linear model or other machine learning methods. In addition , we illustrate which factor contributes to prediction.

Suggested Citation

  • Kei Nakagawa & Takumi Uchida & Tomohisa Aoshima, 2018. "Deep Factor Model," Papers 1810.01278, arXiv.org.
  • Handle: RePEc:arx:papers:1810.01278
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.01278
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    3. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    4. Novy-Marx, Robert, 2013. "The other side of value: The gross profitability premium," Journal of Financial Economics, Elsevier, vol. 108(1), pages 1-28.
    5. R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
    6. Avanidhar Subrahmanyam, 2010. "The Cross†Section of Expected Stock Returns: What Have We Learnt from the Past Twenty†Five Years of Research?," European Financial Management, European Financial Management Association, vol. 16(1), pages 27-42, January.
    7. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    8. Rosenberg, Barr & McKibben, Walt, 1973. "The Prediction of Systematic and Specific Risk in Common Stocks," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(2), pages 317-333, March.
    9. Fama, Eugene F. & French, Kenneth R., 2012. "Size, value, and momentum in international stock returns," Journal of Financial Economics, Elsevier, vol. 105(3), pages 457-472.
    10. Blitz, D.C. & van Vliet, P., 2007. "The Volatility Effect: Lower Risk without Lower Return," ERIM Report Series Research in Management ERS-2007-044-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kei Nakagawa & Tomoki Ito & Masaya Abe & Kiyoshi Izumi, 2019. "Deep Recurrent Factor Model: Interpretable Non-Linear and Time-Varying Multi-Factor Model," Papers 1901.11493, arXiv.org.
    2. Sang Il Lee & Seong Joon Yoo, 2019. "Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets," Papers 1903.06478, arXiv.org, revised Sep 2019.
    3. Yusuke Uchiyama & Kei Nakagawa, 2020. "TPLVM: Portfolio Construction by Student's $t$-process Latent Variable Model," Papers 2002.06243, arXiv.org.
    4. Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
    5. Kei Nakagawa & Masaya Abe & Junpei Komiyama, 2019. "A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy," Papers 1910.01491, arXiv.org.
    6. Yusuke Uchiyama & Kei Nakagawa, 2020. "TPLVM: Portfolio Construction by Student’s t -Process Latent Variable Model," Mathematics, MDPI, vol. 8(3), pages 1-10, March.
    7. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    8. Sang Il Lee, 2020. "Deeply Equal-Weighted Subset Portfolios," Papers 2006.14402, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    2. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, February.
    3. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    4. Calvet, Laurent E. & Betermier, Sebastien & Jo, Evan, 2019. "A Supply and Demand Approach to Equity Pricing," CEPR Discussion Papers 13974, C.E.P.R. Discussion Papers.
    5. Alles Rodrigues, Alexandre & Casalin, Fabrizio, 2022. "Factor investing in Brazil: Diversifying across factor tilts and allocation strategies," Emerging Markets Review, Elsevier, vol. 52(C).
    6. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    7. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    8. Sina Ehsani & Juhani T. Linnainmaa, 2019. "Factor Momentum and the Momentum Factor," NBER Working Papers 25551, National Bureau of Economic Research, Inc.
    9. Jansen, Maarten & Swinkels, Laurens & Zhou, Weili, 2021. "Anomalies in the China A-share market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    10. Bartram, Söhnke M. & Grinblatt, Mark, 2021. "Global market inefficiencies," Journal of Financial Economics, Elsevier, vol. 139(1), pages 234-259.
    11. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    12. Rocciolo, Francesco & Gheno, Andrea & Brooks, Chris, 2022. "Explaining abnormal returns in stock markets: An alpha-neutral version of the CAPM," International Review of Financial Analysis, Elsevier, vol. 82(C).
    13. Benjamin Rainer Auer, 2018. "Are standard asset pricing factors long-range dependent?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(1), pages 66-88, January.
    14. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    15. Güler ARAS & İlhan ÇAM & Bilal ZAVALSIZ & Serkan KESKİN, 2018. "Fama-French Çok Faktör Varlık Fiyatlama Modellerinin Performanslarının Karşılaştırılması: Borsa İstanbul Üzerine Bir Uygulama," Istanbul Business Research, Istanbul University Business School, vol. 47(2), pages 183-207, November.
    16. Şahin, Baki Cem & Danışoğlu, Seza, 2022. "Ambiguity and asset pricing: An empirical investigation for an emerging market," International Review of Financial Analysis, Elsevier, vol. 84(C).
    17. Michael Dempsey, 2015. "Stock Markets, Investments and Corporate Behavior:A Conceptual Framework of Understanding," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p1007, August.
    18. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    19. Christopher Kantos & Dan diBartolomeo, 2020. "How the pandemic taught us to turn smart beta into real alpha," Journal of Asset Management, Palgrave Macmillan, vol. 21(7), pages 581-590, December.
    20. Roy, Rahul & Shijin, Santhakumar, 2022. "The saving, human wealth and asset pricing nexus: Evidence from around the world," Economic Systems, Elsevier, vol. 46(2).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.01278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.