IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.09466.html
   My bibliography  Save this paper

Derivatives pricing using signature payoffs

Author

Listed:
  • Imanol Perez Arribas

Abstract

We introduce signature payoffs, a family of path-dependent derivatives that are given in terms of the signature of the price path of the underlying asset. We show that these derivatives are dense in the space of continuous payoffs, a result that is exploited to quickly price arbitrary continuous payoffs. This approach to pricing derivatives is then tested with European options, American options, Asian options, lookback options and variance swaps. As we show, signature payoffs can be used to price these derivatives with very high accuracy.

Suggested Citation

  • Imanol Perez Arribas, 2018. "Derivatives pricing using signature payoffs," Papers 1809.09466, arXiv.org.
  • Handle: RePEc:arx:papers:1809.09466
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.09466
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Feng & Man Luo & Zhaoyu Zhang, 2021. "Deep Signature FBSDE Algorithm," Papers 2108.10504, arXiv.org, revised Aug 2022.
    2. Terry Lyons & Sina Nejad & Imanol Perez Arribas, 2019. "Numerical method for model-free pricing of exotic derivatives using rough path signatures," Papers 1905.01720, arXiv.org, revised Feb 2020.
    3. Erhan Bayraktar & Qi Feng & Zhaoyu Zhang, 2022. "Deep Signature Algorithm for Multi-dimensional Path-Dependent Options," Papers 2211.11691, arXiv.org, revised Jan 2024.
    4. Terry Lyons & Sina Nejad & Imanol Perez Arribas, 2019. "Nonparametric pricing and hedging of exotic derivatives," Papers 1905.00711, arXiv.org.
    5. Owen Futter & Blanka Horvath & Magnus Wiese, 2023. "Signature Trading: A Path-Dependent Extension of the Mean-Variance Framework with Exogenous Signals," Papers 2308.15135, arXiv.org, revised Aug 2023.
    6. Ming Min & Tomoyuki Ichiba, 2023. "Convolutional signature for sequential data," Digital Finance, Springer, vol. 5(1), pages 3-28, March.
    7. Bruno Dupire & Valentin Tissot-Daguette, 2022. "Functional Expansions," Papers 2212.13628, arXiv.org, revised Mar 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.09466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.