IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1804.03002.html
   My bibliography  Save this paper

Portfolio Optimization under Fast Mean-reverting and Rough Fractional Stochastic Environment

Author

Listed:
  • Jean-Pierre Fouque
  • Ruimeng Hu

Abstract

Fractional stochastic volatility models have been widely used to capture the non-Markovian structure revealed from financial time series of realized volatility. On the other hand, empirical studies have identified scales in stock price volatility: both fast-time scale on the order of days and slow-scale on the order of months. So, it is natural to study the portfolio optimization problem under the effects of dependence behavior which we will model by fractional Brownian motions with Hurst index $H$, and in the fast or slow regimes characterized by small parameters $\eps$ or $\delta$. For the slowly varying volatility with $H \in (0,1)$, it was shown that the first order correction to the problem value contains two terms of order $\delta^H$, one random component and one deterministic function of state processes, while for the fast varying case with $H > \half$, the same form holds at order $\eps^{1-H}$. This paper is dedicated to the remaining case of a fast-varying rough environment ($H

Suggested Citation

  • Jean-Pierre Fouque & Ruimeng Hu, 2018. "Portfolio Optimization under Fast Mean-reverting and Rough Fractional Stochastic Environment," Papers 1804.03002, arXiv.org, revised Jan 2019.
  • Handle: RePEc:arx:papers:1804.03002
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1804.03002
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thaleia Zariphopoulou, 1999. "Optimal investment and consumption models with non-linear stock dynamics," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(2), pages 271-296, October.
    2. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    5. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    6. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    7. Tehranchi, Michael, 2004. "Explicit solutions of some utility maximization problems in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 114(1), pages 109-125, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Boguslavskaya & M. Boguslavsky & D. Muravey, 2020. "Trading multiple mean reversion," Papers 2009.09816, arXiv.org.
    2. Nicole Bauerle & Sascha Desmettre, 2018. "Portfolio Optimization in Fractional and Rough Heston Models," Papers 1809.10716, arXiv.org, revised May 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Pierre Fouque & Ruimeng Hu, 2017. "Optimal Portfolio under Fractional Stochastic Environment," Papers 1703.06969, arXiv.org, revised Dec 2017.
    2. Jean-Pierre Fouque & Ruimeng Hu, 2017. "Optimal Portfolio under Fast Mean-reverting Fractional Stochastic Environment," Papers 1706.03139, arXiv.org, revised Feb 2018.
    3. Rohini Kumar & Hussein Nasralah, 2016. "Asymptotic approximation of optimal portfolio for small time horizons," Papers 1611.09300, arXiv.org, revised Feb 2018.
    4. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    5. Oleksii Mostovyi, 2017. "Optimal consumption of multiple goods in incomplete markets," Papers 1705.02291, arXiv.org, revised Jan 2018.
    6. Guiyuan Ma & Song-Ping Zhu, 2022. "Revisiting the Merton Problem: from HARA to CARA Utility," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 651-686, February.
    7. Benjamín Vallejo Jiménez & Francisco Venegas Martínez, 2017. "Optimal consumption and portfolio rules when the asset price is driven by a time-inhomogeneous Markov modulated fractional Brownian motion with," Economics Bulletin, AccessEcon, vol. 37(1), pages 314-326.
    8. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    9. Maxim Bichuch & Jean-Pierre Fouque, 2019. "Optimal Investment with Correlated Stochastic Volatility Factors," Papers 1908.07626, arXiv.org, revised Nov 2022.
    10. Michail Anthropelos & Scott Robertson & Konstantinos Spiliopoulos, 2018. "Optimal Investment, Demand and Arbitrage under Price Impact," Papers 1804.09151, arXiv.org, revised Dec 2018.
    11. Monoyios, Michael, 2007. "The minimal entropy measure and an Esscher transform in an incomplete market model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1070-1076, June.
    12. Jean-Pierre Fouque & Ruimeng Hu, 2016. "Asymptotic Optimal Strategy for Portfolio Optimization in a Slowly Varying Stochastic Environment," Papers 1603.03538, arXiv.org, revised Nov 2016.
    13. Vicky Henderson & Gechun Liang, 2014. "Pseudo linear pricing rule for utility indifference valuation," Finance and Stochastics, Springer, vol. 18(3), pages 593-615, July.
    14. Michail Anthropelos & Scott Robertson & Konstantinos Spiliopoulos, 2015. "The pricing of contingent claims and optimal positions in asymptotically complete markets," Papers 1509.06210, arXiv.org, revised Sep 2016.
    15. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Financial Science Trends and Perspectives: A Review Article," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    16. Bernard, C. & De Gennaro Aquino, L. & Vanduffel, S., 2023. "Optimal multivariate financial decision making," European Journal of Operational Research, Elsevier, vol. 307(1), pages 468-483.
    17. Lena Schutte, 2017. "Retirement Wealth under Fixed Limits: The Optimal Strategy for Exponential Utility," Papers 1712.00463, arXiv.org.
    18. Michail Anthropelos & Scott Robertson & Konstantinos Spiliopoulos, 2021. "Optimal investment, derivative demand, and arbitrage under price impact," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 3-35, January.
    19. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Tendencias y perspectivas de la ciencia financiera: Un artículo de revisión," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    20. Ruimeng Hu, 2018. "Asymptotic Optimal Portfolio in Fast Mean-reverting Stochastic Environments," Papers 1803.07720, arXiv.org, revised Jan 2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1804.03002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.