IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1802.09864.html
   My bibliography  Save this paper

Option Pricing Models Driven by the Space-Time Fractional Diffusion: Series Representation and Applications

Author

Listed:
  • Jean-Philippe Aguilar
  • Jan Korbel

Abstract

In this paper, we focus on option pricing models based on space-time fractional diffusion. We briefly revise recent results which show that the option price can be represented in the terms of rapidly converging double-series and apply these results to the data from real markets. We focus on estimation of model parameters from the market data and estimation of implied volatility within the space-time fractional option pricing models.

Suggested Citation

  • Jean-Philippe Aguilar & Jan Korbel, 2018. "Option Pricing Models Driven by the Space-Time Fractional Diffusion: Series Representation and Applications," Papers 1802.09864, arXiv.org.
  • Handle: RePEc:arx:papers:1802.09864
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1802.09864
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Philippe Aguilar & Jan Korbel, 2019. "Simple Formulas for Pricing and Hedging European Options in the Finite Moment Log-Stable Model," Risks, MDPI, vol. 7(2), pages 1-14, April.
    2. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    3. Pedro Febrer & João Guerra, 2021. "Residue Sum Formula for Pricing Options under the Variance Gamma Model," Mathematics, MDPI, vol. 9(10), pages 1-29, May.
    4. Nikolaos Roidos & Yuanzhen Shao, 2023. "The fractional porous medium equation on manifolds with conical singularities II," Mathematische Nachrichten, Wiley Blackwell, vol. 296(4), pages 1616-1650, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1802.09864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.