Author
Listed:
- Leilei Wu
- Zhuoming Ren
- Xiao-Long Ren
- Jianlin Zhang
- Linyuan Lu
Abstract
The ongoing rapid development of the e-commercial and interest-base websites make it more pressing to evaluate objects' accurate quality before recommendation by employing an effective reputation system. The objects' quality are often calculated based on their historical information, such as selected records or rating scores, to help visitors to make decisions before watching, reading or buying. Usually high quality products obtain a higher average ratings than low quality products regardless of rating biases or errors. However many empirical cases demonstrate that consumers may be misled by rating scores added by unreliable users or deliberate tampering. In this case, users' reputation, i.e., the ability to rating trustily and precisely, make a big difference during the evaluating process. Thus, one of the main challenges in designing reputation systems is eliminating the effects of users' rating bias on the evaluation results. To give an objective evaluation of each user's reputation and uncover an object's intrinsic quality, we propose an iterative balance (IB) method to correct users' rating biases. Experiments on two online video-provided Web sites, namely MovieLens and Netflix datasets, show that the IB method is a highly self-consistent and robust algorithm and it can accurately quantify movies' actual quality and users' stability of rating. Compared with existing methods, the IB method has higher ability to find the "dark horses", i.e., not so popular yet good movies, in the Academy Awards.
Suggested Citation
Leilei Wu & Zhuoming Ren & Xiao-Long Ren & Jianlin Zhang & Linyuan Lu, 2018.
"Eliminating the effect of rating bias on reputation systems,"
Papers
1801.05734, arXiv.org.
Handle:
RePEc:arx:papers:1801.05734
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1801.05734. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.