Debiased Machine Learning of Set-Identified Linear Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
- Christian Bontemps & Thierry Magnac & Eric Maurin, 2012.
"Set Identified Linear Models,"
Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
- Bontemps, Christian & Magnac, Thierry & Maurin, Eric, 2007. "Set Identified Linear Models," IDEI Working Papers 494, Institut d'Économie Industrielle (IDEI), Toulouse.
- Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Post-Print halshs-00754590, HAL.
- Bontemps, Christian & Magnac, Thierry & Maurin, Eric, 2009. "Set Identified Linear Models," TSE Working Papers 09-090, Toulouse School of Economics (TSE).
- Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," PSE-Ecole d'économie de Paris (Postprint) halshs-00754590, HAL.
- Christian Bontemps & Thierry Magnac & Eric Maurin, 2011. "Set identified linear models," CeMMAP working papers CWP13/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Newey, Whitney K, 1994.
"The Asymptotic Variance of Semiparametric Estimators,"
Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
- Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
- Newey, W.K., 1991. "The Asymptotic Variance of Semiparametric Estimators," Working papers 583, Massachusetts Institute of Technology (MIT), Department of Economics.
- Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012.
"Inference for best linear approximations to set identified functions,"
CeMMAP working papers
43/12, Institute for Fiscal Studies.
- Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers CWP43/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arie Beresteanu & Francesca Molinari, 2008.
"Asymptotic Properties for a Class of Partially Identified Models,"
Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
- Beresteanu, Arie & Molinari, Francesca, 2006. "Asymptotic Properties for a Class of Partially Identified Models," Working Papers 06-04, Duke University, Department of Economics.
- Arie Beresteanu & Francesca Molinari, 2006. "Asymptotic properties for a class of partially identified models," CeMMAP working papers CWP10/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Beresteanu, Arie & Molinari, Francesca, 2006. "Asymptotic Properties for a Class of Partially Identified Models," Working Papers 06-07, Cornell University, Center for Analytic Economics.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
- Vira Semenova, 2023. "Aggregated Intersection Bounds and Aggregated Minimax Values," Papers 2303.00982, arXiv.org, revised Jun 2024.
- Kaido, Hiroaki, 2017.
"Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable,"
Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
- Hiroaki Kaido, 2013. "Asymptotically Efficient Estimation of Weighted Average Derivatives with an Inverval Censored Variable," Boston University - Department of Economics - Working Papers Series 2013-022, Boston University - Department of Economics.
- Hiroaki Kaido, 2014. "Asymptotically efficient estimation of weighted average derivatives with an interval censored variable," CeMMAP working papers 03/14, Institute for Fiscal Studies.
- Hiroaki Kaido, 2014. "Asymptotically efficient estimation of weighted average derivatives with an interval censored variable," CeMMAP working papers CWP03/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Lee, Ying-Ying & Bhattacharya, Debopam, 2019.
"Applied welfare analysis for discrete choice with interval-data on income,"
Journal of Econometrics, Elsevier, vol. 211(2), pages 361-387.
- Lee, Y-Y. & Bhattacharya, D., 2018. "Applied Welfare Analysis for Discrete Choice with Interval-data on Income," Cambridge Working Papers in Economics 1882, Faculty of Economics, University of Cambridge.
- Francesca Molinari, 2020.
"Microeconometrics with Partial Identi?cation,"
CeMMAP working papers
CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
- Yuan Liao & Anna Simoni, 2012.
"Semi-parametric Bayesian Partially Identified Models based on Support Function,"
Papers
1212.3267, arXiv.org, revised Nov 2013.
- Liao, Yuan & Simoni, Anna, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," MPRA Paper 43262, University Library of Munich, Germany.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022.
"Unconditional quantile regression with high‐dimensional data,"
Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2020. "Unconditional Quantile Regression with High Dimensional Data," Papers 2007.13659, arXiv.org, revised Feb 2022.
- Whitney K. Newey & James M. Robins, 2017. "Cross-fitting and fast remainder rates for semiparametric estimation," CeMMAP working papers 41/17, Institute for Fiscal Studies.
- Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Mar 2024.
- Vira Semenova, 2018. "Machine Learning for Dynamic Discrete Choice," Papers 1808.02569, arXiv.org, revised Nov 2018.
- Juan Carlos Escanciano & Lin Zhu, 2013. "Set inferences and sensitivity analysis in semiparametric conditionally identified models," CeMMAP working papers CWP55/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Yuan Liao & Anna Simoni, 2016. "Bayesian Inference for Partially Identified Convex Models: Is it Valid for Frequentist Inference?," Departmental Working Papers 201607, Rutgers University, Department of Economics.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Liao, Yuan & Simoni, Anna, 2019.
"Bayesian inference for partially identified smooth convex models,"
Journal of Econometrics, Elsevier, vol. 211(2), pages 338-360.
- Yuan Liao & Anna Simoni, 2019. "Bayesian inference for partially identified smooth convex models," Post-Print hal-03089881, HAL.
- Sven Klaassen & Jannis Kueck & Martin Spindler, 2017. "Transformation Models in High-Dimensions," Papers 1712.07364, arXiv.org.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019.
"Non-separable models with high-dimensional data,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2017. "Non-separable Models with High-dimensional Data," Economics and Statistics Working Papers 15-2017, Singapore Management University, School of Economics.
- Juan Carlos Escanciano & Lin Zhu, 2013. "Set inferences and sensitivity analysis in semiparametric conditionally identified models," CeMMAP working papers 55/13, Institute for Fiscal Studies.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2018-01-08 (Big Data)
- NEP-ECM-2018-01-08 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1712.10024. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.