IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.10552.html
   My bibliography  Save this paper

Using nonlinear stochastic and deterministic (chaotic tools) to test the EMH of two Electricity Markets the case of Italy and Greece

Author

Listed:
  • George P Papaioannou
  • Christos Dikaiakos
  • Anargyros Dramountanis
  • Dionysios S Georgiadis
  • Panagiotis G Papaioannou

Abstract

Utilization of non-linear tools to characterize the state of development of the electricity markets in Italy and Greece. This is equivalent to testing the Efficient Market Hypothesis on these markets. The tools include a variety of complexity measures like Maximal Lyapunov and Hurst exponents and HHI index for market concentration and Entropy, a measure of uncertainty and complexity in a dynamical system, applied on the electricity wholesale marginal prices PUN and SMP of Italy and Greece.Our aim is to measure the complexity and dimensionality of the manifold on which the underlying stochastic dynamical system, govenring the prices, evolve. We also use the conditional volatility of prices, which is a measure of the market risk, and its connection with stability, and Hurst exponent to investigate the properties of the fluctuations of the prices which are the footprints of the idiosyncrracies of each market.

Suggested Citation

  • George P Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Dionysios S Georgiadis & Panagiotis G Papaioannou, 2017. "Using nonlinear stochastic and deterministic (chaotic tools) to test the EMH of two Electricity Markets the case of Italy and Greece," Papers 1711.10552, arXiv.org.
  • Handle: RePEc:arx:papers:1711.10552
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.10552
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    2. Ralf Becker & Stan Hurn & Vlad Pavlov, 2007. "Modelling Spikes in Electricity Prices," The Economic Record, The Economic Society of Australia, vol. 83(263), pages 371-382, December.
    3. Simonsen, Ingve & Weron, Rafal & Mo, Birger, 2004. "Structure and stylized facts of a deregulated power market," MPRA Paper 1443, University Library of Munich, Germany.
    4. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2012. "Forecasting spikes in electricity prices," International Journal of Forecasting, Elsevier, vol. 28(2), pages 400-411.
    5. repec:qut:auncer:2012_5 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molaie, Moslem & Samani, Farhad S. & Zippo, Antonio & Iarriccio, Giovanni & Pellicano, Francesco, 2023. "Spiral bevel gears: Bifurcation and chaos analyses of pure torsional system," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Herrera, Rodrigo & González, Nicolás, 2014. "The modeling and forecasting of extreme events in electricity spot markets," International Journal of Forecasting, Elsevier, vol. 30(3), pages 477-490.
    3. Antonio Bello & Javier Reneses & Antonio Muñoz, 2016. "Medium-Term Probabilistic Forecasting of Extremely Low Prices in Electricity Markets: Application to the Spanish Case," Energies, MDPI, vol. 9(3), pages 1-27, March.
    4. Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
    5. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    6. A. Stan Hurn & Annastiina Silvennoinen & Timo Teräsvirta, 2016. "A Smooth Transition Logit Model of The Effects of Deregulation in the Electricity Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 707-733, June.
    7. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    8. Pawel Maryniak & Rafal Weron, 2014. "Forecasting the occurrence of electricity price spikes in the UK power market," HSC Research Reports HSC/14/11, Hugo Steinhaus Center, Wroclaw University of Technology.
    9. Ergemen, Yunus Emre & Haldrup, Niels & Rodríguez-Caballero, Carlos Vladimir, 2016. "Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads," Energy Economics, Elsevier, vol. 60(C), pages 79-96.
    10. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Efficient modeling and forecasting of electricity spot prices," Energy Economics, Elsevier, vol. 47(C), pages 98-111.
    11. Hung Do & Rabindra Nepal & Russell Smyth, 2020. "Interconnectedness in the Australian National Electricity Market: A Higher‐Moment Analysis," The Economic Record, The Economic Society of Australia, vol. 96(315), pages 450-469, December.
    12. Jerzy Rembeza & Grzegorz Przekota, 2022. "Influence of the Industry’s Output on Electricity Prices: Comparison of the Nord Pool and HUPX Markets," Energies, MDPI, vol. 15(16), pages 1-15, August.
    13. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    14. Ziel, Florian & Steinert, Rick, 2016. "Electricity price forecasting using sale and purchase curves: The X-Model," Energy Economics, Elsevier, vol. 59(C), pages 435-454.
    15. Florian Ziel & Rick Steinert, 2015. "Electricity Price Forecasting using Sale and Purchase Curves: The X-Model," Papers 1509.00372, arXiv.org, revised Aug 2016.
    16. Adam Clements & Joanne Fuller & Stan Hurn, 2013. "Semi-parametric Forecasting of Spikes in Electricity Prices," The Economic Record, The Economic Society of Australia, vol. 89(287), pages 508-521, December.
    17. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Bunn, Derek, 2016. "Weather and market specificities in the regional transmission of renewable energy price effects," Energy, Elsevier, vol. 114(C), pages 188-200.
    18. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    19. Rangga Handika & Chi Truong & Stefan Trueck & Rafal Weron, 2014. "Modelling price spikes in electricity markets - the impact of load, weather and capacity," HSC Research Reports HSC/14/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    20. Hryshchuk, Antanina & Lessmann, Stefan, 2018. "Deregulated day-ahead electricity markets in Southeast Europe: Price forecasting and comparative structural analysis," IRTG 1792 Discussion Papers 2018-009, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.10552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.