IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1708.04337.html
   My bibliography  Save this paper

Optimal placement of a small order in a diffusive limit order book

Author

Listed:
  • Jos'e E. Figueroa-L'opez
  • Hyoeun Lee
  • Raghu Pasupathy

Abstract

We study the optimal placement problem of a stock trader who wishes to clear his/her inventory by a predetermined time horizon t, by using a limit order or a market order. For a diffusive market, we characterize the optimal limit order placement policy and analyze its behavior under different market conditions. In particular, we show that, in the presence of a negative drift, there exists a critical time t0>0 such that, for any time horizon t>t0, there exists an optimal placement, which, contrary to earlier work, is different from one that is placed "infinitesimally" close to the best ask, such as the best bid and second best bid. We also propose a simple method to approximate the critical time t0 and the optimal order placement.

Suggested Citation

  • Jos'e E. Figueroa-L'opez & Hyoeun Lee & Raghu Pasupathy, 2017. "Optimal placement of a small order in a diffusive limit order book," Papers 1708.04337, arXiv.org.
  • Handle: RePEc:arx:papers:1708.04337
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1708.04337
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    2. Antoine Jacquier & Hao Liu, 2017. "Optimal liquidation in a Level-I limit order book for large tick stocks," Papers 1701.01327, arXiv.org, revised Nov 2017.
    3. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    4. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    5. Frédéric Abergel & Aymen Jedidi, 2013. "A Mathematical Approach To Order Book Modeling," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-40.
    6. Fabien Guilbaud & Huyên Pham, 2013. "Optimal high-frequency trading with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 79-94, January.
    7. Rama Cont & Adrien de Larrard, 2013. "Price Dynamics in a Markovian Limit Order Market," Post-Print hal-00552252, HAL.
    8. Frédéric Abergel & Aymen Jedidi, 2013. "A Mathematical Approach to Order Book Modelling," Post-Print hal-00621253, HAL.
    9. Frederic Abergel & Aymen Jedidi, 2010. "A Mathematical Approach to Order Book Modeling," Papers 1010.5136, arXiv.org, revised Mar 2013.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Guo & Zhao Ruan & Lingjiong Zhu, 2015. "Dynamics of Order Positions and Related Queues in a Limit Order Book," Papers 1505.04810, arXiv.org, revised Oct 2015.
    2. Ulrich Horst & Michael Paulsen, 2015. "A law of large numbers for limit order books," Papers 1501.00843, arXiv.org.
    3. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    4. Nicolas Baradel & Bruno Bouchard & David Evangelista & Othmane Mounjid, 2019. "Optimal inventory management and order book modeling," Post-Print hal-01710301, HAL.
    5. Ulrich Horst & Dörte Kreher, 2018. "Second order approximations for limit order books," Finance and Stochastics, Springer, vol. 22(4), pages 827-877, October.
    6. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "Optimal liquidation under indirect price impact with propagator," LIDAM Discussion Papers ISBA 2023012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    8. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    9. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    10. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    11. Chávez-Casillas, Jonathan A. & Figueroa-López, José E., 2017. "A one-level limit order book model with memory and variable spread," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2447-2481.
    12. Jonathan A. Ch'avez-Casillas & Jos'e E. Figueroa-L'opez, 2014. "One-level limit order book models with memory and variable spread," Papers 1407.5684, arXiv.org, revised Mar 2016.
    13. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    14. Weibing Huang & Mathieu Rosenbaum & Pamela Saliba, 2019. "From Glosten-Milgrom to the whole limit order book and applications to financial regulation," Papers 1902.10743, arXiv.org.
    15. Xin Liu & Qi Gong & Vidyadhar G. Kulkarni, 2015. "A Stochastic Model of Order Book Dynamics using Bouncing Geometric Brownian Motions," Papers 1511.04096, arXiv.org, revised Mar 2016.
    16. Qinghua Li, 2014. "Facilitation and Internalization Optimal Strategy in a Multilateral Trading Context," Papers 1404.7320, arXiv.org, revised Jan 2015.
    17. Mohammad Zare & Omid Naghshineh Arjmand & Erfan Salavati & Adel Mohammadpour, 2021. "An Agent‐Based model for Limit Order Book: Estimation and simulation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1112-1121, January.
    18. Clinet, Simon & Yoshida, Nakahiro, 2017. "Statistical inference for ergodic point processes and application to Limit Order Book," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1800-1839.
    19. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.04337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.