IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1708.01897.html
   My bibliography  Save this paper

Machine learning in sentiment reconstruction of the simulated stock market

Author

Listed:
  • Mikhail Goykhman
  • Ali Teimouri

Abstract

In this paper we continue the study of the simulated stock market framework defined by the driving sentiment processes. We focus on the market environment driven by the buy/sell trading sentiment process of the Markov chain type. We apply the methodology of the Hidden Markov Models and the Recurrent Neural Networks to reconstruct the transition probabilities matrix of the Markov sentiment process and recover the underlying sentiment states from the observed stock price behavior.

Suggested Citation

  • Mikhail Goykhman & Ali Teimouri, 2017. "Machine learning in sentiment reconstruction of the simulated stock market," Papers 1708.01897, arXiv.org.
  • Handle: RePEc:arx:papers:1708.01897
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1708.01897
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001. "Agent-based simulation of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
    2. Mikhail Goykhman, 2017. "Wealth dynamics in a sentiment-driven market," Papers 1705.07092, arXiv.org.
    3. Arthur, W.B. & Holland, J.H. & LeBaron, B. & Palmer, R. & Tayler, P., 1996. "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Working papers 9625, Wisconsin Madison - Social Systems.
    4. Goykhman, Mikhail, 2017. "Wealth dynamics in a sentiment-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 132-148.
    5. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    6. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    7. G. Kavitha & A. Udhayakumar & D. Nagarajan, 2013. "Stock Market Trend Analysis Using Hidden Markov Models," Papers 1311.4771, arXiv.org.
    8. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linda Ponta & Silvano Cincotti, 2018. "Traders’ Networks of Interactions and Structural Properties of Financial Markets: An Agent-Based Approach," Complexity, Hindawi, vol. 2018, pages 1-9, January.
    2. Goykhman, Mikhail, 2017. "Wealth dynamics in a sentiment-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 132-148.
    3. Mikhail Goykhman, 2017. "Wealth dynamics in a sentiment-driven market," Papers 1705.07092, arXiv.org.
    4. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    5. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    6. Mario A Bertella & Felipe R Pires & Ling Feng & Harry Eugene Stanley, 2014. "Confidence and the Stock Market: An Agent-Based Approach," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    7. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    8. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    9. Roberto Savona & Maxence Soumare & Jørgen Vitting Andersen, 2015. "Financial Symmetry and Moods in the Market," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    10. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2009. "More hedging instruments may destabilize markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1912-1928, November.
    11. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    12. Ryuichi YAMAMOTO, 2005. "Evolution with Individual and Social Learning in an Agent-Based Stock Market," Computing in Economics and Finance 2005 228, Society for Computational Economics.
    13. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    14. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    15. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    16. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    17. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
    18. Hommes, C.H., 2006. "Interacting agents in finance, entry written for the New Palgrave Dictionary of Economics, Second Edition, edited by L. Blume and S. Durlauf, Palgrave Macmillan, forthcoming 2006," CeNDEF Working Papers 06-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    19. Laib, Fodil & Laib, M.S., 2007. "Some mathematical properties of the futures market platform," MPRA Paper 6126, University Library of Munich, Germany.
    20. Marco Licalzi & Paolo Pellizzari, 2003. "Fundamentalists clashing over the book: a study of order-driven stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 470-480.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.01897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.