IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1707.07977.html
   My bibliography  Save this paper

Ether: Bitcoin's competitor or ally?

Author

Listed:
  • Jamal Bouoiyour

    (CATT)

  • Refk Selmi

    (CATT)

Abstract

Although Bitcoin has long been dominant in the crypto scene, it is certainly not alone. Ether is another cryptocurrency related project that has attracted an intensive attention because of its additional features. This study seeks to test whether these cryptocurrencies differ in terms of their volatile and speculative behaviors, hedge, safe haven and risk diversification properties. Using different econometric techniques, we show that a) Bitcoin and Ether are volatile and relatively more responsive to bad news, but the volatility of Ether is more persistent than that of Bitcoin; b) for both cryptocurrencies, the exuberance and the collapse of bubbles were identified, but Bitcoin appears more speculative than Ether; c) there is negative and significant correlation between Bitcoin/Ether and other assets (S\&P500 stocks, US bonds, oil), which would indicate that digital currencies can hedge against the price movements of these assets; d) there is negative tail independence between Bitcoin/Ether and other financial assets, implying that these cryptocurrencies exhibit the function of a weak safe haven; and e) The inclusion of Bitcoin/ Ether in a portfolio improve its efficiency in terms of higher reward-to-risk ratios. But investors who hold diversified portfolios made of stocks or bonds and Ether may face losses over bearish regime. In such situation, stock and bond investors may take a short position on Bitcoin.

Suggested Citation

  • Jamal Bouoiyour & Refk Selmi, 2017. "Ether: Bitcoin's competitor or ally?," Papers 1707.07977, arXiv.org.
  • Handle: RePEc:arx:papers:1707.07977
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1707.07977
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1043-1078, November.
    2. Jamal Bouoiyour & Refk Selmi, 2017. "The Bitcoin price formation: Beyond the fundamental sources," Papers 1707.01284, arXiv.org.
    3. Lieven Baele & Geert Bekaert & Koen Inghelbrecht & Min Wei, 2020. "Flights to Safety," The Review of Financial Studies, Society for Financial Studies, vol. 33(2), pages 689-746.
    4. Reboredo, Juan C., 2013. "Is gold a safe haven or a hedge for the US dollar? Implications for risk management," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2665-2676.
    5. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    6. Virginie Coudert & Hélène Raymond-Feingold, 2011. "Gold and financial assets: Are there any safe havens in bear markets?," Economics Bulletin, AccessEcon, vol. 31(2), pages 1613-1622.
    7. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Jamal Bouoiyour & Refk Selmi & Aviral Kumar Tiwari & Olaolu Richard Olayeni, 2016. "What drives Bitcoin price?," Economics Bulletin, AccessEcon, vol. 36(2), pages 843-850.
    10. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    11. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    12. Jamal Bouoiyour & Refk Selmi, 2015. "What Does Bitcoin Look Like?," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 449-492, November.
    13. Luis A. Gil‐Alana, 2008. "Fractional integration and structural breaks at unknown periods of time," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 163-185, January.
    14. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    15. Jamal Bouoiyour & Refk Selmi, 2014. "Commodity price uncertainty and manufactured exports in Morocco and Tunisia: Some insights from a novel GARCH model," Economics Bulletin, AccessEcon, vol. 34(1), pages 220-233.
    16. David Yermack, 2013. "Is Bitcoin a Real Currency? An economic appraisal," NBER Working Papers 19747, National Bureau of Economic Research, Inc.
    17. Caspi, Itamar & Katzke, Nico & Gupta, Rangan, 2018. "Date stamping historical periods of oil price explosivity: 1876–2014," Energy Economics, Elsevier, vol. 70(C), pages 582-587.
    18. Luis A. Gil-Alana, 2003. "Testing of unit roots and other fractionally integrated hypotheses in the presence of structural breaks," Empirical Economics, Springer, vol. 28(1), pages 101-113, January.
    19. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    20. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    21. Mehmet Balcilar & Zeynel Abidin Ozdemir & Esin Cakan, 2015. "Structural Breaks, Long Memory, or Unit Roots in Stock Prices: Evidence from Emerging Markets," International Econometric Review (IER), Econometric Research Association, vol. 7(1), pages 13-33, April.
    22. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    23. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yosra Ghabri & Luu Duc Toan Huynh & Muhammad Ali Nasir, 2024. "Volatility spillovers, hedging and safe‐havens under pandemics: All that glitters is not gold!," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1318-1344, April.
    2. Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    3. Bhuiyan, Rubaiyat Ahsan & Husain, Afzol & Zhang, Changyong, 2021. "A wavelet approach for causal relationship between bitcoin and conventional asset classes," Resources Policy, Elsevier, vol. 71(C).
    4. Nader Trabelsi, 2018. "Are There Any Volatility Spill-Over Effects among Cryptocurrencies and Widely Traded Asset Classes?," JRFM, MDPI, vol. 11(4), pages 1-17, October.
    5. Guesmi, Khaled & Saadi, Samir & Abid, Ilyes & Ftiti, Zied, 2019. "Portfolio diversification with virtual currency: Evidence from bitcoin," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 431-437.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouoiyour, Jamal & Selmi, Refk, 2015. "Bitcoin Price: Is it really that New Round of Volatility can be on way?," MPRA Paper 65580, University Library of Munich, Germany.
    2. Jamal Bouoiyour & Refk Selmi, 2016. "Bitcoin: a beginning of a new phase?," Economics Bulletin, AccessEcon, vol. 36(3), pages 1430-1440.
    3. Jamal Bouoiyour & Refk Selmi, 2017. "The Bitcoin price formation: Beyond the fundamental sources," Working Papers hal-01548710, HAL.
    4. Jamal Bouoiyour & Refk Selmi, 2020. "Coronavirus Spreads and Bitcoin's 2020 Rally: Is There a Link ?," Working Papers hal-02493309, HAL.
    5. Bouoiyour, Jamal & Miftah, Amal & Selmi, Refk, 2014. "Do Financial Flows raise or reduce Economic growth Volatility? Some Lessons from Moroccan case," MPRA Paper 57258, University Library of Munich, Germany.
    6. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    7. Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
    8. Jamal Bouoiyour & Refk Selmi, 2017. "Are Trump and Bitcoin Good Partners?," Working Papers hal-01480031, HAL.
    9. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    10. Mehmet Balcilar & Rangan Gupta & Nico Frederick Katzke, 2015. "Identifying Periods of US Housing Market Explosivity," Working Papers 15-03, Eastern Mediterranean University, Department of Economics.
    11. Köksal, Bülent, 2009. "A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns," MPRA Paper 30510, University Library of Munich, Germany.
    12. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    13. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    14. Zheng-Zheng Li & Ran Tao & Chi-Wei Su & Oana-Ramona Lobonţ, 2019. "Does Bitcoin bubble burst?," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(1), pages 91-105, January.
    15. Balcilar, Mehmet & Katzke, Nico & Gupta, Rangan, 2018. "Date-stamping US housing market explosivity," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-33.
    16. Jamal Bouoiyour & Refk Selmi, 2015. "Exchange volatility and export performance in Egypt: New insights from wavelet decomposition and optimal GARCH model," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 24(2), pages 201-227, March.
    17. Mehmet Balcilar & Rangan Gupta & Charl Jooste & Omid Ranjbar, 2015. "Characterising the South African Business Cycle: Is GDP Difference-Stationary or Trend-Stationary in a Markov-Switching Setup?," Working Papers 201529, University of Pretoria, Department of Economics.
    18. Su, Chi-Wei & Li, Zheng-Zheng & Tao, Ran & Si, Deng-Kui, 2018. "Testing for multiple bubbles in bitcoin markets: A generalized sup ADF test," Japan and the World Economy, Elsevier, vol. 46(C), pages 56-63.
    19. Elie Bouri & Mahamitra Das & Rangan Gupta & David Roubaud, 2018. "Spillovers between Bitcoin and other assets during bear and bull markets," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5935-5949, November.
    20. Siwen Zhou, 2021. "Exploring the driving forces of the Bitcoin currency exchange rate dynamics: an EGARCH approach," Empirical Economics, Springer, vol. 60(2), pages 557-606, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1707.07977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.