IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1703.01989.html
   My bibliography  Save this paper

Wisdom of the institutional crowd

Author

Listed:
  • Kevin Primicerio
  • Damien Challet
  • Stanislao Gualdi

Abstract

The average portfolio structure of institutional investors is shown to have properties which account for transaction costs in an optimal way. This implies that financial institutions unknowingly display collective rationality, or Wisdom of the Crowd. Individual deviations from the rational benchmark are ample, which illustrates that system-wide rationality does not need nearly rational individuals. Finally we discuss the importance of accounting for constraints when assessing the presence of Wisdom of the Crowd.

Suggested Citation

  • Kevin Primicerio & Damien Challet & Stanislao Gualdi, 2017. "Wisdom of the institutional crowd," Papers 1703.01989, arXiv.org, revised Sep 2017.
  • Handle: RePEc:arx:papers:1703.01989
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1703.01989
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    2. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    3. Gualdi, Stanislao & Tarzia, Marco & Zamponi, Francesco & Bouchaud, Jean-Philippe, 2015. "Tipping points in macroeconomic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 29-61.
    4. Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
    5. repec:pri:cepsud:91malkiel is not listed on IDEAS
    6. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    7. Nofer, Michael & Hinz, Oliver, 2014. "Are Crowds on the Internet Wiser than Experts? The Case of a Stock Prediction Community," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 69935, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. David Morton de Lachapelle & Damien Challet, 2009. "Turnover, account value and diversification of real traders: evidence of collective portfolio optimizing behavior," Papers 0912.4723, arXiv.org, revised Jun 2010.
    10. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    11. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin Primicerio & Damien Challet & Stanislao Gualdi, 2021. "Collective rationality and functional wisdom of the crowd in far-from-rational institutional investors," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 153-171, January.
    2. Cristi Spulbar & Ramona Birau & Lucian Florin Spulbar, 2021. "A Critical Survey on Efficient Market Hypothesis (EMH), Adaptive Market Hypothesis (AMH) and Fractal Markets Hypothesis (FMH) Considering Their Implication on Stock Markets Behavior," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 1161-1165, December.
    3. Taufiq Choudhry & Ranadeva Jayasekera, 2015. "Level of efficiency in the UK equity market: empirical study of the effects of the global financial crisis," Review of Quantitative Finance and Accounting, Springer, vol. 44(2), pages 213-242, February.
    4. Mahata, Ajit & Rai, Anish & Nurujjaman, Md. & Prakash, Om, 2021. "Modeling and analysis of the effect of COVID-19 on the stock price: V and L-shape recovery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    5. Yardley, Ben, 2020. "The Effects of Donald Trump’s Tweets on The Stock Exchange," MPRA Paper 102578, University Library of Munich, Germany.
    6. Qianwei Ying & Tahir Yousaf & Qurat ul Ain & Yasmeen Akhtar & Muhammad Shahid Rasheed, 2019. "Stock Investment and Excess Returns: A Critical Review in the Light of the Efficient Market Hypothesis," JRFM, MDPI, vol. 12(2), pages 1-22, June.
    7. Kamal, Mona, 2014. "Studying the Validity of the Efficient Market Hypothesis (EMH) in the Egyptian Exchange (EGX) after the 25th of January Revolution," MPRA Paper 54708, University Library of Munich, Germany.
    8. Szafarz, Ariane, 2012. "Financial crises in efficient markets: How fundamentalists fuel volatility," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 105-111.
    9. Marianna Brunetti & Roberta De Luca, 2023. "Pairs trading in the index options market," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(1), pages 145-173, March.
    10. Jürgen Huber & Michael Kirchler, 2013. "Corporate campaign contributions and abnormal stock returns after presidential elections," Public Choice, Springer, vol. 156(1), pages 285-307, July.
    11. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    12. Mikio Ito & Akihiko Noda & Tatsuma Wada, 2016. "The evolution of stock market efficiency in the US: a non-Bayesian time-varying model approach," Applied Economics, Taylor & Francis Journals, vol. 48(7), pages 621-635, February.
    13. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    14. Francois Mercier & Makesh Narsimhan, 2022. "Discovering material information using hierarchical Reformer model on financial regulatory filings," Papers 2204.05979, arXiv.org.
    15. Abdulnasser Hatemi-J, 2012. "Asymmetric causality tests with an application," Empirical Economics, Springer, vol. 43(1), pages 447-456, August.
    16. Kao, Yu-Sheng & Day, Min-Yuh & Chou, Ke-Hsin, 2024. "A comparison of bitcoin futures return and return volatility based on news sentiment contemporaneously or lead-lag," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    17. Alagidede, Paul, 2011. "Return behaviour in Africa's emerging equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 133-140, May.
    18. Christopher R. Stephens & Harald A. Benink & José Luís Gordillo & Juan Pablo Pardo-Guerra, 2021. "A New Measure of Market Inefficiency," JRFM, MDPI, vol. 14(6), pages 1-22, June.
    19. Al Janabi, Mazin A.M. & Hatemi-J, Abdulnasser & Irandoust, Manuchehr, 2010. "An empirical investigation of the informational efficiency of the GCC equity markets: Evidence from bootstrap simulation," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 47-54, January.
    20. Dionysia Dionysiou, 2015. "Choosing Among Alternative Long-Run Event-Study Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 158-198, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1703.01989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.