IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1702.05809.html
   My bibliography  Save this paper

Network-based Anomaly Detection for Insider Trading

Author

Listed:
  • Adarsh Kulkarni
  • Priya Mani
  • Carlotta Domeniconi

Abstract

Insider trading is one of the numerous white collar crimes that can contribute to the instability of the economy. Traditionally, the detection of illegal insider trades has been a human-driven process. In this paper, we collect the insider tradings made available by the US Securities and Exchange Commissions (SEC) through the EDGAR system, with the aim of initiating an automated large-scale and data-driven approach to the problem of identifying illegal insider tradings. The goal of the study is the identification of interesting patterns, which can be indicators of potential anomalies. We use the collected data to construct networks that capture the relationship between trading behaviors of insiders. We explore different ways of building networks from insider trading data, and argue for a need of a structure that is capable of capturing higher order relationships among traders. Our results suggest the discovery of interesting patterns.

Suggested Citation

  • Adarsh Kulkarni & Priya Mani & Carlotta Domeniconi, 2017. "Network-based Anomaly Detection for Insider Trading," Papers 1702.05809, arXiv.org.
  • Handle: RePEc:arx:papers:1702.05809
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1702.05809
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1702.05809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.