IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1608.06781.html
   My bibliography  Save this paper

Fractal approach towards power-law coherency to measure cross-correlations between time series

Author

Listed:
  • Ladislav Kristoufek

Abstract

We focus on power-law coherency as an alternative approach towards studying power-law cross-correlations between simultaneously recorded time series. To be able to study empirical data, we introduce three estimators of the power-law coherency parameter $H_{\rho}$ based on popular techniques usually utilized for studying power-law cross-correlations -- detrended cross-correlation analysis (DCCA), detrending moving-average cross-correlation analysis (DMCA) and height cross-correlation analysis (HXA). In the finite sample properties study, we focus on the bias, variance and mean squared error of the estimators. We find that the DMCA-based method is the safest choice among the three. The HXA method is reasonable for long time series with at least $10^4$ observations, which can be easily attainable in some disciplines but problematic in others. The DCCA-based method does not provide favorable properties which even deteriorate with an increasing time series length. The paper opens a new venue towards studying cross-correlations between time series.

Suggested Citation

  • Ladislav Kristoufek, 2016. "Fractal approach towards power-law coherency to measure cross-correlations between time series," Papers 1608.06781, arXiv.org, revised Feb 2017.
  • Handle: RePEc:arx:papers:1608.06781
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1608.06781
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Luo-Qing & Xu, Yong-Xiang, 2018. "Assessing the relevance of individual characteristics for the structure of similarity networks in new social strata in Shanghai," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 881-889.
    2. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1608.06781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.