IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1607.05514.html
   My bibliography  Save this paper

Sectoral co-movements in the Indian stock market: A mesoscopic network analysis

Author

Listed:
  • Kiran Sharma
  • Shreyansh Shah
  • Anindya S. Chakrabarti
  • Anirban Chakraborti

Abstract

In this article we review several techniques to extract information from stock market data. We discuss recurrence analysis of time series, decomposition of aggregate correlation matrices to study co-movements in financial data, stock level partial correlations with market indices, multidimensional scaling and minimum spanning tree. We apply these techniques to daily return time series from the Indian stock market. The analysis allows us to construct networks based on correlation matrices of individual stocks in one hand and on the other, we discuss dynamics of market indices. Thus both micro level and macro level dynamics can be analyzed using such tools. We use the multi-dimensional scaling methods to visualize the sectoral structure of the stock market, and analyze the comovements among the sectoral stocks. Finally, we construct a mesoscopic network based on sectoral indices. Minimum spanning tree technique is seen to be extremely useful in order to separate technologically related sectors and the mapping corresponds to actual production relationship to a reasonable extent.

Suggested Citation

  • Kiran Sharma & Shreyansh Shah & Anindya S. Chakrabarti & Anirban Chakraborti, 2016. "Sectoral co-movements in the Indian stock market: A mesoscopic network analysis," Papers 1607.05514, arXiv.org.
  • Handle: RePEc:arx:papers:1607.05514
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1607.05514
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baumol, William J & Benhabib, Jess, 1989. "Chaos: Significance, Mechanism, and Economic Applications," Journal of Economic Perspectives, American Economic Association, vol. 3(1), pages 77-105, Winter.
    2. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    3. Bastos, João A. & Caiado, Jorge, 2011. "Recurrence quantification analysis of global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1315-1325.
    4. Anirban Chakraborti, 2006. "An Outlook on Correlations in Stock Prices," Papers physics/0605246, arXiv.org.
    5. Gayatri Tilak & Tamas Szell & Remy Chicheportiche & Anirban Chakraborti, 2012. "Study of statistical correlations in intraday and daily financial return time series," Papers 1204.5103, arXiv.org.
    6. Raj Kumar Pan & Sitabhra Sinha, 2007. "Collective behavior of stock price movements in an emerging market," Papers 0704.0773, arXiv.org, revised Nov 2007.
    7. Guhathakurta, Kousik & Bhattacharya, Basabi & Chowdhury, A. Roy, 2010. "Using recurrence plot analysis to distinguish between endogenous and exogenous stock market crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1874-1882.
    8. Brock, William A. & Sayers, Chera L., 1988. "Is the business cycle characterized by deterministic chaos?," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 71-90, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Xu, Mengjia & Shang, Pengjian & Lin, Aijing, 2017. "Multiscale recurrence quantification analysis of order recurrence plots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 381-389.
    3. Marisa Faggini, 2011. "Chaotic Time Series Analysis in Economics: Balance and Perspectives," Working papers 25, Former Department of Economics and Public Finance "G. Prato", University of Torino.
    4. Elena Olmedo, 2014. "Forecasting Spanish Unemployment Using Near Neighbour and Neural Net Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 183-197, February.
    5. Chen, Huan & Mai, Yong & Li, Sai-Ping, 2014. "Analysis of network clustering behavior of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 360-367.
    6. Franz Alonso Hamann S., 1996. "Puede Explicarse El Precio Externo Del Café Con Un Modelo Econometrico No Lineal?," Borradores de Economia 3408, Banco de la Republica.
    7. Luis A. Aguirre & Antonio Aguirre, 1997. "A tutorial introduction to nonlinear dynamics in economics," Nova Economia, Economics Department, Universidade Federal de Minas Gerais (Brazil), vol. 7(2), pages 9-47.
    8. Olmedo, Elena, 2011. "Is there chaos in the Spanish labour market?," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1045-1053.
    9. Teresa Aparicio & Dulce Saura, 2013. "Do Exchange Rate Series Present General Dependence? Some Results using Recurrence Quantification Analysis," Journal of Economics and Behavioral Studies, AMH International, vol. 5(10), pages 678-686.
    10. Nijkamp, Peter & Reggiani, Aura, 1995. "Non-linear evolution of dynamic spatial systems. The relevance of chaos and ecologically-based models," Regional Science and Urban Economics, Elsevier, vol. 25(2), pages 183-210, April.
    11. Giuseppe Orlando & Giovanna Zimatore, 2021. "Recurrence Quantification Analysis of Business Cycles," Dynamic Modeling and Econometrics in Economics and Finance, in: Giuseppe Orlando & Alexander N. Pisarchik & Ruedi Stoop (ed.), Nonlinearities in Economics, chapter 0, pages 269-282, Springer.
    12. Madhavan, Vinodh, 2013. "Nonlinearity in investment grade Credit Default Swap (CDS) Indices of US and Europe: Evidence from BDS and close-returns tests," Global Finance Journal, Elsevier, vol. 24(3), pages 266-279.
    13. Marisa Faggini & Bruna Bruno & Anna Parziale, 2019. "Does Chaos Matter in Financial Time Series Analysis?," International Journal of Economics and Financial Issues, Econjournals, vol. 9(4), pages 18-24.
    14. B. Goswami & G. Ambika & N. Marwan & J. Kurths, 2011. "On interrelations of recurrences and connectivity trends between stock indices," Papers 1103.5189, arXiv.org.
    15. Costas Siriopoulos & Alexandros Leontitsis, 2002. "Nonlinear Noise Estimation in International Capital Markets," Multinational Finance Journal, Multinational Finance Journal, vol. 6(1), pages 43-63, March.
    16. Barnett, William A. & Serletis, Apostolos & Serletis, Demitre, 2015. "Nonlinear And Complex Dynamics In Economics," Macroeconomic Dynamics, Cambridge University Press, vol. 19(8), pages 1749-1779, December.
    17. M. Saeedian & T. Jamali & M. Z. Kamali & H. Bayani & T. Yasseri & G. R. Jafari, 2017. "Emergence of world-stock-market network," Papers 1703.08781, arXiv.org.
    18. Adrangi, Bahram & Chatrath, Arjun & Dhanda, Kanwalroop Kathy & Raffiee, Kambiz, 2001. "Chaos in oil prices? Evidence from futures markets," Energy Economics, Elsevier, vol. 23(4), pages 405-425, July.
    19. Gordon R. Richards, 2004. "A fractal forecasting model for financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 586-601.
    20. Kumar, Sushil & Kumar, Sunil & Kumar, Pawan, 2020. "Diffusion entropy analysis and random matrix analysis of the Indian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1607.05514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.