IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1605.06301.html
   My bibliography  Save this paper

BSDEs with mean reflection

Author

Listed:
  • Philippe Briand

    (LAMA)

  • Romuald Elie

    (LAMA)

  • Ying Hu

    (IRMAR)

Abstract

In this paper, we study a new type of BSDE, where the distribution of the Y-component of the solution is required to satisfy an additional constraint, written in terms of the expectation of a loss function. This constraint is imposed at any deterministic time t and is typically weaker than the classical pointwise one associated to reflected BSDEs. Focusing on solutions (Y, Z, K) with deterministic K, we obtain the well-posedness of such equation, in the presence of a natural Skorokhod type condition. Such condition indeed ensures the minimality of the enhanced solution, under an additional structural condition on the driver. Our results extend to the more general framework where the constraint is written in terms of a static risk measure on Y. In particular, we provide an application to the super hedging of claims under running risk management constraint.

Suggested Citation

  • Philippe Briand & Romuald Elie & Ying Hu, 2016. "BSDEs with mean reflection," Papers 1605.06301, arXiv.org.
  • Handle: RePEc:arx:papers:1605.06301
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1605.06301
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roxana Dumitrescu & Romuald Elie & Wissal Sabbagh & Chao Zhou, 2017. "A new Mertens decomposition of $\mathscr{Y}^{g,\xi}$-submartingale systems. Application to BSDEs with weak constraints at stopping times," Papers 1708.05957, arXiv.org, revised May 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1605.06301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.