IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1605.01998.html
   My bibliography  Save this paper

Unbiased Monte Carlo Simulation of Diffusion Processes

Author

Listed:
  • Louis Paulot

Abstract

Monte Carlo simulations of diffusion processes often introduce bias in the final result, due to time discretization. Using an auxiliary Poisson process, it is possible to run simulations which are unbiased. In this article, we propose such a Monte Carlo scheme which converges to the exact value. We manage to keep the simulation variance finite in all cases, so that the strong law of large numbers guarantees the convergence. Moreover, the simulation noise is a decreasing function of the Poisson process intensity. Our method handles multidimensional processes with nonconstant drifts and nonconstant variance-covariance matrices. It also encompasses stochastic interest rates.

Suggested Citation

  • Louis Paulot, 2016. "Unbiased Monte Carlo Simulation of Diffusion Processes," Papers 1605.01998, arXiv.org.
  • Handle: RePEc:arx:papers:1605.01998
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1605.01998
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andersson, Patrik & Kohatsu-Higa, Arturo & Yuasa, Tomooki, 2020. "Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5543-5574.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1605.01998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.