IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1602.06295.html
   My bibliography  Save this paper

Solar energy production: Short-term forecasting and risk management

Author

Listed:
  • C'edric Join
  • Michel Fliess
  • Cyril Voyant
  • Fr'ed'eric Chaxel

Abstract

Electricity production via solar energy is tackled via short-term forecasts and risk management. Our main tool is a new setting on time series. It allows the definition of "confidence bands" where the Gaussian assumption, which is not satisfied by our concrete data, may be abandoned. Those bands are quite convenient and easily implementable. Numerous computer simulations are presented.

Suggested Citation

  • C'edric Join & Michel Fliess & Cyril Voyant & Fr'ed'eric Chaxel, 2016. "Solar energy production: Short-term forecasting and risk management," Papers 1602.06295, arXiv.org.
  • Handle: RePEc:arx:papers:1602.06295
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1602.06295
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    2. Michel Fliess & Cédric Join & Cyril Voyant, 2018. "Prediction bands for solar energy: New short-term time series forecasting techniques," Post-Print hal-01736518, HAL.
    3. Voyant, Cyril & Notton, Gilles & Darras, Christophe & Fouilloy, Alexis & Motte, Fabrice, 2017. "Uncertainties in global radiation time series forecasting using machine learning: The multilayer perceptron case," Energy, Elsevier, vol. 125(C), pages 248-257.
    4. Voyant, Cyril & Motte, Fabrice & Fouilloy, Alexis & Notton, Gilles & Paoli, Christophe & Nivet, Marie-Laure, 2017. "Forecasting method for global radiation time series without training phase: Comparison with other well-known prediction methodologies," Energy, Elsevier, vol. 120(C), pages 199-208.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1602.06295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.