IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1510.03040.html
   My bibliography  Save this paper

Coupled uncertainty provided by a multifractal random walker

Author

Listed:
  • Z. Koohi Lai
  • S. Vasheghani Farahani
  • S. M. S. Movahed
  • G. R. Jafari

Abstract

The aim here is to study the concept of pairing multifractality between time series possessing non-Gaussian distributions. The increasing number of rare events creates "criticality". We show how the pairing between two series is affected by rare events, which we call "coupled criticality". A method is proposed for studying the coupled criticality born out of the interaction between two series, using the bivariate multifractal random walk (BiMRW). This method allows studying dependence of the coupled criticality on the criticality of each individual system. This approach is applied to data sets of gold and oil markets, and inflation and unemployment.

Suggested Citation

  • Z. Koohi Lai & S. Vasheghani Farahani & S. M. S. Movahed & G. R. Jafari, 2015. "Coupled uncertainty provided by a multifractal random walker," Papers 1510.03040, arXiv.org.
  • Handle: RePEc:arx:papers:1510.03040
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1510.03040
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Hosseini & Samin Tajik & Zahra Koohi Lai & Tayeb Jamali & Emmanuel Haven & G. Reza Jafari, 2022. "Quantum Bohmian Inspired Potential to Model Non-Gaussian Events and the Application in Financial Markets," Papers 2204.11203, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1510.03040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.