IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1509.08280.html
   My bibliography  Save this paper

Sticky processes, local and true martingales

Author

Listed:
  • Mikl'os R'asonyi
  • Hasanjan Sayit

Abstract

We prove that for a so-called sticky process $S$ there exists an equivalent probability $Q$ and a $Q$-martingale $\tilde{S}$ that is arbitrarily close to $S$ in $L^p(Q)$ norm. For continuous $S$, $\tilde{S}$ can be chosen arbitrarily close to $S$ in supremum norm. In the case where $S$ is a local martingale we may choose $Q$ arbitrarily close to the original probability in the total variation norm. We provide examples to illustrate the power of our results and present applications in mathematical finance.

Suggested Citation

  • Mikl'os R'asonyi & Hasanjan Sayit, 2015. "Sticky processes, local and true martingales," Papers 1509.08280, arXiv.org, revised Mar 2017.
  • Handle: RePEc:arx:papers:1509.08280
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1509.08280
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Guasoni, 2006. "No Arbitrage Under Transaction Costs, With Fractional Brownian Motion And Beyond," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 569-582, July.
    2. J. Jacod & A.N. Shiryaev, 1998. "Local martingales and the fundamental asset pricing theorems in the discrete-time case," Finance and Stochastics, Springer, vol. 2(3), pages 259-273.
    3. Attila Herczegh & Vilmos Prokaj & Mikl'os R'asonyi, 2013. "Diversity and no arbitrage," Papers 1301.4173, arXiv.org, revised Aug 2014.
    4. Paolo Guasoni & Mikl'os R'asonyi & Walter Schachermayer, 2008. "Consistent price systems and face-lifting pricing under transaction costs," Papers 0803.4416, arXiv.org.
    5. Paolo Guasoni & Miklós Rásonyi, 2015. "Fragility of arbitrage and bubbles in local martingale diffusion models," Finance and Stochastics, Springer, vol. 19(2), pages 215-231, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Hérault & Dean Hyslop & Stephen P. Jenkins & Roger Wilkins, 2024. "Rising top‐income persistence in Australia: Evidence from income tax data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 70(1), pages 154-186, March.
    2. Huy N. Chau & Mikl'os R'asonyi, 2016. "Skorohod's representation theorem and optimal strategies for markets with frictions," Papers 1606.07311, arXiv.org, revised Apr 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Czichowsky & Walter Schachermayer, 2015. "Portfolio optimisation beyond semimartingales: shadow prices and fractional Brownian motion," Papers 1505.02416, arXiv.org, revised Aug 2016.
    2. Takaki Hayashi & Yuta Koike, 2017. "No arbitrage and lead-lag relationships," Papers 1712.09854, arXiv.org.
    3. Czichowsky, Christoph & Schachermayer, Walter, 2017. "Portfolio optimisation beyond semimartingales: shadowprices and fractional Brownian motion," LSE Research Online Documents on Economics 67689, London School of Economics and Political Science, LSE Library.
    4. Christian Bender & Mikko S. Pakkanen & Hasanjan Sayit, 2013. "Sticky continuous processes have consistent price systems," CREATES Research Papers 2013-38, Department of Economics and Business Economics, Aarhus University.
    5. Christian Bender & Mikko S. Pakkanen & Hasanjan Sayit, 2013. "Sticky continuous processes have consistent price systems," Papers 1310.7857, arXiv.org, revised Aug 2014.
    6. Chr. Framstad, Nils, 2011. "On free lunches in random walk markets with short-sale constraints and small transaction costs, and weak convergence to Gaussian continuous-time processes," Memorandum 20/2011, Oslo University, Department of Economics.
    7. Christoph Kuhn, 2023. "The fundamental theorem of asset pricing with and without transaction costs," Papers 2307.00571, arXiv.org, revised Aug 2024.
    8. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    9. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    10. Hasanjan Sayit, 2013. "Absence of arbitrage in a general framework," Annals of Finance, Springer, vol. 9(4), pages 611-624, November.
    11. Christian Bender & Sebastian Ferrando & Alfredo Gonzalez, 2021. "Model-Free Finance and Non-Lattice Integration," Papers 2105.10623, arXiv.org.
    12. Niv Nayman, 2018. "Shortfall Risk Minimization Under Fixed Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-29, August.
    13. Lingqi Gu & Yiqing Lin & Junjian Yang, 2016. "On the existence of shadow prices for optimal investment with random endowment," Papers 1602.01109, arXiv.org, revised Feb 2017.
    14. John Armstrong & Claudio Bellani & Damiano Brigo & Thomas Cass, 2021. "Option pricing models without probability: a rough paths approach," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1494-1521, October.
    15. Paolo Guasoni & Yuliya Mishura & Miklós Rásonyi, 2021. "High-frequency trading with fractional Brownian motion," Finance and Stochastics, Springer, vol. 25(2), pages 277-310, April.
    16. Paolo Guasoni & Miklós Rásonyi & Walter Schachermayer, 2010. "The fundamental theorem of asset pricing for continuous processes under small transaction costs," Annals of Finance, Springer, vol. 6(2), pages 157-191, March.
    17. Frezza, Massimiliano, 2014. "Goodness of fit assessment for a fractal model of stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 41-50.
    18. Paolo Guasoni & Mikl'os R'asonyi & Walter Schachermayer, 2008. "Consistent price systems and face-lifting pricing under transaction costs," Papers 0803.4416, arXiv.org.
    19. Christoph Kuhn & Alexander Molitor, 2020. "Semimartingale price systems in models with transaction costs beyond efficient friction," Papers 2001.03190, arXiv.org, revised Aug 2021.
    20. Erhan Bayraktar & Hasanjan Sayit, 2010. "On the stickiness property," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1109-1112.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1509.08280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.