IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1508.07582.html
   My bibliography  Save this paper

Approximating the Sum of Correlated Lognormals: An Implementation

Author

Listed:
  • Christopher J. Rook
  • Mitchell Kerman

Abstract

Lognormal random variables appear naturally in many engineering disciplines, including wireless communications, reliability theory, and finance. So, too, does the sum of (correlated) lognormal random variables. Unfortunately, no closed form probability distribution exists for such a sum, and it requires approximation. Some approximation methods date back over 80 years and most take one of two approaches, either: 1) an approximate probability distribution is derived mathematically, or 2) the sum is approximated by a single lognormal random variable. In this research, we take the latter approach and review a fairly recent approximation procedure proposed by Mehta, Wu, Molisch, and Zhang (2007), then implement it using C++. The result is applied to a discrete time model commonly encountered within the field of financial economics.

Suggested Citation

  • Christopher J. Rook & Mitchell Kerman, 2015. "Approximating the Sum of Correlated Lognormals: An Implementation," Papers 1508.07582, arXiv.org.
  • Handle: RePEc:arx:papers:1508.07582
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1508.07582
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher J. Rook, 2017. "Multivariate Density Modeling for Retirement Finance," Papers 1709.04070, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1508.07582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.