IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1508.06586.html
   My bibliography  Save this paper

Financial Market Modeling with Quantum Neural Networks

Author

Listed:
  • Carlos Pedro Gonc{c}alves

Abstract

Econophysics has developed as a research field that applies the formalism of Statistical Mechanics and Quantum Mechanics to address Economics and Finance problems. The branch of Econophysics that applies of Quantum Theory to Economics and Finance is called Quantum Econophysics. In Finance, Quantum Econophysics' contributions have ranged from option pricing to market dynamics modeling, behavioral finance and applications of Game Theory, integrating the empirical finding, from human decision analysis, that shows that nonlinear update rules in probabilities, leading to non-additive decision weights, can be computationally approached from quantum computation, with resulting quantum interference terms explaining the non-additive probabilities. The current work draws on these results to introduce new tools from Quantum Artificial Intelligence, namely Quantum Artificial Neural Networks as a way to build and simulate financial market models with adaptive selection of trading rules, leading to turbulence and excess kurtosis in the returns distributions for a wide range of parameters.

Suggested Citation

  • Carlos Pedro Gonc{c}alves, 2015. "Financial Market Modeling with Quantum Neural Networks," Papers 1508.06586, arXiv.org.
  • Handle: RePEc:arx:papers:1508.06586
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1508.06586
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1508.06586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.