IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1508.00607.html
   My bibliography  Save this paper

Existence of continuous euclidean embeddings for a weak class of orders

Author

Listed:
  • Lawrence Carr

Abstract

We prove that if $X$ is a topological space that admits Debreu's classical utility theorem (eg.\ $X$ is separable and connected, second countable, etc.), then order relations on $X$ satisfying milder completeness conditions can be continuously embedded in $\mathbb R^I$ for $I$ some index set. In the particular case where $X$ is a compact metric space, this closes a conjecture of Nishimura \& Ok (2015). We also show that when $\mathbb R^I$ is given a non-standard partial order coinciding with Pareto improvement, the analogous embedding theorem fails to hold in the continuous case.

Suggested Citation

  • Lawrence Carr, 2015. "Existence of continuous euclidean embeddings for a weak class of orders," Papers 1508.00607, arXiv.org, revised Jan 2021.
  • Handle: RePEc:arx:papers:1508.00607
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1508.00607
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Candeal, Juan C. & Indurain, Esteban & Mehta, Ghanshyam B., 2004. "Utility functions on locally connected spaces," Journal of Mathematical Economics, Elsevier, vol. 40(6), pages 701-711, September.
    2. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Bich & Rida Laraki, 2017. "Externalities in Economies with Endogenous Sharing Rules," PSE-Ecole d'économie de Paris (Postprint) halshs-01437507, HAL.
    2. McClellon, Morgan, 2016. "Confidence models of incomplete preferences," Mathematical Social Sciences, Elsevier, vol. 83(C), pages 30-34.
    3. Philippe Bich & Rida Laraki, 2015. "Abstract Economies with Endogenous Sharing Rules," Documents de travail du Centre d'Economie de la Sorbonne 15058, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    4. Cosimo Munari, 2020. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Papers 2009.04151, arXiv.org.
    5. Gerasímou, Georgios, 2010. "Consumer theory with bounded rational preferences," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 708-714, September.
    6. Henrik Petri, 2018. "A “three-sentence proof” of Hansson’s theorem," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 6(1), pages 111-114, April.
    7. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    8. Attila Ambrus & Kareen Rozen, 2015. "Rationalising Choice with Multi‐self Models," Economic Journal, Royal Economic Society, vol. 125(585), pages 1136-1156, June.
    9. Kabanov, Yuri & Lépinette, Emmanuel, 2013. "Essential supremum with respect to a random partial order," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 478-487.
    10. Susumu Cato, 2013. "Quasi-decisiveness, quasi-ultrafilter, and social quasi-orderings," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(1), pages 169-202, June.
    11. Shaofang Qi, 2016. "A characterization of the n-agent Pareto dominance relation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 695-706, March.
    12. Marcus Pivato, 2020. "Subjective expected utility with a spectral state space," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(2), pages 249-313, March.
    13. Karni, Edi, 2020. "Probabilistic sophistication without completeness," Journal of Mathematical Economics, Elsevier, vol. 89(C), pages 8-13.
    14. Philippe Bich & Rida Laraki, 2017. "Externalities in Economies with Endogenous Sharing Rules," Post-Print halshs-01437507, HAL.
    15. Alcantud, José Carlos R. & Dubey, Ram Sewak, 2014. "Ordering infinite utility streams: Efficiency, continuity, and no impatience," Mathematical Social Sciences, Elsevier, vol. 72(C), pages 33-40.
    16. Dino Borie, 2012. "Social Decision Theory and Non-strategic Behaviour," GREDEG Working Papers 2012-10, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    17. Panagiotis Andrikopoulos & Nick Webber, 2019. "Understanding time-inconsistent heterogeneous preferences in economics and finance: a practice theory approach," Annals of Operations Research, Springer, vol. 282(1), pages 3-26, November.
    18. Gori, Michele & Pianigiani, Giulio, 2010. "On the Arrow-Hahn utility representation method," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 282-287, May.
    19. Leandro Nascimento, 2011. "Remarks on the consumer problem under incomplete preferences," Theory and Decision, Springer, vol. 70(1), pages 95-110, January.
    20. Drapeau, Samuel & Jamneshan, Asgar, 2016. "Conditional preference orders and their numerical representations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 106-118.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1508.00607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.