IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1507.05415.html
   My bibliography  Save this paper

Endogenous Derivation and Forecast of Lifetime PDs

Author

Listed:
  • Volodymyr Perederiy

Abstract

This paper proposes a simple technical approach for the analytical derivation of Point-in-Time PD (probability of default) forecasts, with minimal data requirements. The inputs required are the current and future Through-the-Cycle PDs of the obligors, their last known default rates, and a measurement of the systematic dependence of the obligors. Technically, the forecasts are made from within a classical asset-based credit portfolio model, with the additional assumption of a simple (first/second order) autoregressive process for the systematic factor. This paper elaborates in detail on the practical issues of implementation, especially on the parametrization alternatives. We also show how the approach can be naturally extended to low-default portfolios with volatile default rates, using Bayesian methodology. Furthermore, expert judgments on the current macroeconomic state, although not necessary for the forecasts, can be embedded into the model using the Bayesian technique. The resulting PD forecasts can be used for the derivation of expected lifetime credit losses as required by the newly adopted accounting standard IFRS 9. In doing so, the presented approach is endogenous, as it does not require any exogenous macroeconomic forecasts, which are notoriously unreliable and often subjective. Also, it does not require any dependency modeling between PDs and macroeconomic variables, which often proves to be cumbersome and unstable.

Suggested Citation

  • Volodymyr Perederiy, 2015. "Endogenous Derivation and Forecast of Lifetime PDs," Papers 1507.05415, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:1507.05415
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1507.05415
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1507.05415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.