IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1507.00294.html
   My bibliography  Save this paper

It\^o's formula for finite variation L\'evy processes: The case of non-smooth functions

Author

Listed:
  • Ramin Okhrati
  • Uwe Schmock

Abstract

Extending It\^o's formula to non-smooth functions is important both in theory and applications. One of the fairly general extensions of the formula, known as Meyer-It\^o, applies to one dimensional semimartingales and convex functions. There are also satisfactory generalizations of It\^o's formula for diffusion processes where the Meyer-It\^o assumptions are weakened even further. We study a version of It\^o's formula for multi-dimensional finite variation L\'evy processes assuming that the underlying function is continuous and admits weak derivatives. We also discuss some applications of this extension, particularly in finance.

Suggested Citation

  • Ramin Okhrati & Uwe Schmock, 2015. "It\^o's formula for finite variation L\'evy processes: The case of non-smooth functions," Papers 1507.00294, arXiv.org.
  • Handle: RePEc:arx:papers:1507.00294
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1507.00294
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rong, Situ, 1997. "On solutions of backward stochastic differential equations with jumps and applications," Stochastic Processes and their Applications, Elsevier, vol. 66(2), pages 209-236, March.
    2. Bardina, Xavier & Jolis, Maria, 1997. "An extension of Ito's formula for elliptic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 83-109, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyriakos Georgiou & Athanasios N. Yannacopoulos, 2023. "Probability of Default modelling with L\'evy-driven Ornstein-Uhlenbeck processes and applications in credit risk under the IFRS 9," Papers 2309.12384, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. C. Framstad & B. Øksendal & A. Sulem, 2004. "Sufficient Stochastic Maximum Principle for the Optimal Control of Jump Diffusions and Applications to Finance," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 77-98, April.
    2. Das, Parthasakha & Das, Pritha & Mukherjee, Sayan, 2020. "Stochastic dynamics of Michaelis–Menten kinetics based tumor-immune interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    3. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2018. "Computing Credit Valuation Adjustment solving coupled PIDEs in the Bates model," Papers 1809.05328, arXiv.org.
    4. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2020. "Computing credit valuation adjustment solving coupled PIDEs in the Bates model," Computational Management Science, Springer, vol. 17(2), pages 163-178, June.
    5. Guangbao Guo, 2018. "Finite Difference Methods for the BSDEs in Finance," IJFS, MDPI, vol. 6(1), pages 1-15, March.
    6. Tu, Shuheng & Hao, Wu & Chen, Jing, 2017. "The adapted solutions and comparison theorem for anticipated backward stochastic differential equations with Poisson jumps under the weak conditions," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 7-17.
    7. Sundar, P. & Yin, Hong, 2009. "Existence and uniqueness of solutions to the backward 2D stochastic Navier-Stokes equations," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1216-1234, April.
    8. T. Sathiyaraj & T. Ambika & Ong Seng Huat, 2023. "Exponential Stability of Fractional Large-Scale Neutral Stochastic Delay Systems with Fractional Brownian Motion," JRFM, MDPI, vol. 16(5), pages 1-15, May.
    9. Moret, S. & Nualart, D., 2001. "Generalization of Itô's formula for smooth nondegenerate martingales," Stochastic Processes and their Applications, Elsevier, vol. 91(1), pages 115-149, January.
    10. Yuping Liu & Jin Ma, 2009. "Optimal reinsurance/investment problems for general insurance models," Papers 0908.4538, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1507.00294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.