IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1505.04648.html
   My bibliography  Save this paper

Chebyshev Interpolation for Parametric Option Pricing

Author

Listed:
  • Maximilian Ga{ss}
  • Kathrin Glau
  • Mirco Mahlstedt
  • Maximilian Mair

Abstract

Recurrent tasks such as pricing, calibration and risk assessment need to be executed accurately and in real-time. Simultaneously we observe an increase in model sophistication on the one hand and growing demands on the quality of risk management on the other. To address the resulting computational challenges, it is natural to exploit the recurrent nature of these tasks. We concentrate on Parametric Option Pricing (POP) and show that polynomial interpolation in the parameter space promises to reduce run-times while maintaining accuracy. The attractive properties of Chebyshev interpolation and its tensorized extension enable us to identify criteria for (sub)exponential convergence and explicit error bounds. We show that these results apply to a variety of European (basket) options and affine asset models. Numerical experiments confirm our findings. Exploring the potential of the method further, we empirically investigate the efficiency of the Chebyshev method for multivariate and path-dependent options.

Suggested Citation

  • Maximilian Ga{ss} & Kathrin Glau & Mirco Mahlstedt & Maximilian Mair, 2015. "Chebyshev Interpolation for Parametric Option Pricing," Papers 1505.04648, arXiv.org, revised Jul 2016.
  • Handle: RePEc:arx:papers:1505.04648
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1505.04648
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariano Zeron Medina Laris & Ignacio Ruiz, 2018. "Chebyshev Methods for Ultra-efficient Risk Calculations," Papers 1805.00898, arXiv.org.
    2. Yannick Armenti & Stephane Crepey & Samuel Drapeau & Antonis Papapantoleon, 2015. "Multivariate Shortfall Risk Allocation and Systemic Risk," Papers 1507.05351, arXiv.org, revised Mar 2017.
    3. Damien Ackerer & Damir Filipovi'c, 2016. "Linear Credit Risk Models," Papers 1605.07419, arXiv.org, revised Jul 2019.
    4. Ignacio Ruiz & Mariano Zeron, 2018. "Dynamic Initial Margin via Chebyshev Tensors," Papers 1808.08221, arXiv.org, revised Mar 2020.
    5. Philipp Harms, 2019. "Strong convergence rates for Markovian representations of fractional processes," Papers 1902.01471, arXiv.org, revised Aug 2020.
    6. Maximilian Ga{ss} & Kathrin Glau & Maximilian Mair, 2015. "Magic points in finance: Empirical integration for parametric option pricing," Papers 1511.00884, arXiv.org, revised Nov 2016.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1505.04648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.