IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1412.4342.html
   My bibliography  Save this paper

Russian-Doll Risk Models

Author

Listed:
  • Zura Kakushadze

Abstract

We give a simple explicit algorithm for building multi-factor risk models. It dramatically reduces the number of or altogether eliminates the risk factors for which the factor covariance matrix needs to be computed. This is achieved via a nested "Russian-doll" embedding: the factor covariance matrix itself is modeled via a factor model, whose factor covariance matrix in turn is modeled via a factor model, and so on. We discuss in detail how to implement this algorithm in the case of (binary) industry classification based risk factors (e.g., "sector -> industry -> sub-industry"), and also in the presence of (non-binary) style factors. Our algorithm is particularly useful when long historical lookbacks are unavailable or undesirable, e.g., in short-horizon quant trading.

Suggested Citation

  • Zura Kakushadze, 2014. "Russian-Doll Risk Models," Papers 1412.4342, arXiv.org, revised Nov 2017.
  • Handle: RePEc:arx:papers:1412.4342
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1412.4342
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wayne E. Ferson & Campbell R. Harvey, 1999. "Conditioning Variables and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 54(4), pages 1325-1360, August.
    2. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
    3. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    4. Jagannathan, Ravi & Wang, Zhenyu, 1996. "The Conditional CAPM and the Cross-Section of Expected Returns," Journal of Finance, American Finance Association, vol. 51(1), pages 3-53, March.
    5. Ng, Victor & Engle, Robert F. & Rothschild, Michael, 1992. "A multi-dynamic-factor model for stock returns," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 245-266.
    6. Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
    7. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    8. Blume, Marshall E & Friend, Irwin, 1973. "A New Look at the Capital Asset Pricing Model," Journal of Finance, American Finance Association, vol. 28(1), pages 19-33, March.
    9. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    10. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    11. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    12. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    13. Schwert, G William, 1990. "Stock Returns and Real Activity: A Century of Evidence," Journal of Finance, American Finance Association, vol. 45(4), pages 1237-1257, September.
    14. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    15. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    16. Hall, Anthony D. & Hwang, Soosung & Satchell, Stephen E., 2002. "Using Bayesian variable selection methods to choose style factors in global stock return models," Journal of Banking & Finance, Elsevier, vol. 26(12), pages 2301-2325.
    17. Connor, Gregory & Korajczyk, Robert A., 1988. "Risk and return in an equilibrium APT : Application of a new test methodology," Journal of Financial Economics, Elsevier, vol. 21(2), pages 255-289, September.
    18. Basu, S, 1977. "Investment Performance of Common Stocks in Relation to Their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis," Journal of Finance, American Finance Association, vol. 32(3), pages 663-682, June.
    19. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    20. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    21. Lakonishok, Josef & Shleifer, Andrei & Vishny, Robert W, 1994. "Contrarian Investment, Extrapolation, and Risk," Journal of Finance, American Finance Association, vol. 49(5), pages 1541-1578, December.
    22. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    23. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    24. Ferson, Wayne E & Harvey, Campbell R, 1991. "The Variation of Economic Risk Premiums," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 385-415, April.
    25. Lo, Andrew W & MacKinlay, A Craig, 1990. "Data-Snooping Biases in Tests of Financial Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 431-467.
    26. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    27. Lehmann, Bruce N. & Modest, David M., 1988. "The empirical foundations of the arbitrage pricing theory," Journal of Financial Economics, Elsevier, vol. 21(2), pages 213-254, September.
    28. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    29. Liew, Jimmy & Vassalou, Maria, 2000. "Can book-to-market, size and momentum be risk factors that predict economic growth?," Journal of Financial Economics, Elsevier, vol. 57(2), pages 221-245, August.
    30. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    31. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    32. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    33. Michael W. Brandt & Alon Brav & John R. Graham & Alok Kumar, 2010. "The Idiosyncratic Volatility Puzzle: Time Trend or Speculative Episodes?," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 863-899, February.
    34. Zhang, Chu, 2010. "A Reexamination of the Causes of Time-Varying Stock Return Volatilities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(3), pages 663-684, June.
    35. Black, Fischer, 1972. "Capital Market Equilibrium with Restricted Borrowing," The Journal of Business, University of Chicago Press, vol. 45(3), pages 444-455, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    2. Zura Kakushadze, 2015. "Shrinkage = Factor Model," Papers 1511.04764, arXiv.org, revised Dec 2015.
    3. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    4. Zura Kakushadze & Willie Yu, 2017. "Open Source Fundamental Industry Classification," Data, MDPI, vol. 2(2), pages 1-77, June.
    5. Zura Kakushadze & Willie Yu, 2017. "Open Source Fundamental Industry Classification," Papers 1706.04210, arXiv.org, revised Dec 2017.
    6. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zura Kakushadze, 2014. "4-Factor Model for Overnight Returns," Papers 1410.5513, arXiv.org, revised Jun 2015.
    2. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    3. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    4. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    5. Zura Kakushadze & Jim Kyung-Soo Liew, 2014. "Custom v. Standardized Risk Models," Papers 1409.2575, arXiv.org, revised May 2015.
    6. Zura Kakushadze & Jim Kyung-Soo Liew, 2015. "Custom v. Standardized Risk Models," Risks, MDPI, vol. 3(2), pages 1-27, May.
    7. Ericsson, Johan & Karlsson, Sune, 2003. "Choosing Factors in a Multifactor Asset Pricing Model: A Bayesian Approach," SSE/EFI Working Paper Series in Economics and Finance 524, Stockholm School of Economics, revised 12 Feb 2004.
    8. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    9. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    10. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    11. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    12. Stefano Gubellini, 2014. "Conditioning information and cross-sectional anomalies," Review of Quantitative Finance and Accounting, Springer, vol. 43(3), pages 529-569, October.
    13. Stefan Nagel, 2013. "Empirical Cross-Sectional Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
    14. Avanidhar Subrahmanyam, 2010. "The Cross†Section of Expected Stock Returns: What Have We Learnt from the Past Twenty†Five Years of Research?," European Financial Management, European Financial Management Association, vol. 16(1), pages 27-42, January.
    15. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    16. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, February.
    17. Rocciolo, Francesco & Gheno, Andrea & Brooks, Chris, 2022. "Explaining abnormal returns in stock markets: An alpha-neutral version of the CAPM," International Review of Financial Analysis, Elsevier, vol. 82(C).
    18. John Y. Campbell & Tuomo Vuolteenaho, 2004. "Bad Beta, Good Beta," American Economic Review, American Economic Association, vol. 94(5), pages 1249-1275, December.
    19. Sainan Jin & Liangjun Su & Yonghui Zhang, 2015. "Nonparametric testing for anomaly effects in empirical asset pricing models," Empirical Economics, Springer, vol. 48(1), pages 9-36, February.
    20. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1412.4342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.